Two light sources are a distance D apart

  • Thread starter Thread starter romanski007
  • Start date Start date
  • Tags Tags
    Light Sources
Click For Summary
SUMMARY

The discussion centers on the analysis of two light sources, E1 and E2, separated by a distance D, and the implications of simultaneity in different reference frames using Lorentz transformations. The participants derive the time difference between the events in the moving frame, concluding that the time difference emerges as t2 - t1 = vD/(c(c-v)). They emphasize the importance of correctly applying the Lorentz transformation and understanding the implications of simultaneity on spatial separation. The final derived equation for the distance in the moving frame is x2' - x1' = γD(c+v)/c.

PREREQUISITES
  • Understanding of Lorentz transformations in special relativity
  • Familiarity with the concepts of simultaneity and length contraction
  • Basic knowledge of algebra and calculus for manipulating equations
  • Knowledge of the speed of light (c) and its implications in relativistic physics
NEXT STEPS
  • Study the derivation of Lorentz transformations in detail
  • Explore the concept of simultaneity in different inertial frames
  • Learn about length contraction and its mathematical implications
  • Investigate the implications of relativistic effects on measurements in physics
USEFUL FOR

Physicists, students of relativity, and anyone interested in understanding the effects of motion on the perception of time and distance in different reference frames.

romanski007
Messages
12
Reaction score
1
Homework Statement
Two light sources are at rest and at a distance D apart on the x-axis of some inertial frame, O. They emit photons simultaneously in that frame in the positive x-direction. Show that in an inertial frame, O', in which the sources have a velocity v along the x-axis, the photons are separated by a constant distance $$D\sqrt{\frac{c-u}{c+u}}$$
Relevant Equations
$$D\sqrt{\frac{c-u}{c+u}}$$
$$x_2-x_1 =D$$
I let E1 be the event where source 1 emits the photon and E2 for the second source with the respective coordinates in O as $(x_1, t_1$) and $(x_2,t_2)$ such that $t_2=t_1 \because$ simultaneous and $x_2-x_1 =D$.

Using Lorentz transformation I obtained that in O', $$x'_2-x'_1 = \gamma (D-v(t_2-t_1))=\gamma D \ \because t_2 = t_1$$ In the solutions $$t_2-t_1 = \frac{D}{c} $$ however I cannot see where this came from.
 
Physics news on Phys.org
romanski007 said:
Using Lorentz transformation I obtained that in O', $$x'_2-x'_1 = \gamma (D-v(t_2-t_1))=\gamma D \ \because t_2 = t_1$$
Okay, these are the ##x'## coordinates of events E1 and E2. What about the time coordinates ##t'## of these events?

Note that you apparently have length dilation there: ##D' = \gamma D##(?)
 
PeroK said:
Okay, these are the ##x'## coordinates of events E1 and E2. What about the time coordinates ##t'## of these events?

Note that you apparently have length dilation there: ##D' = \gamma D##(?)

Why do I need ##t'## coordinates if I am only considering the length difference in O' ? Furthermore in O, how does the time difference of ##\frac{D}{c}## emerge if both events are simultaneous in O.
 
romanski007 said:
Why do I need ##t'## coordinates if I am only considering the length difference in O' ?
There are many ways to answer that! One answer is why not compute the time coordinates just to see?

Another answer is: what does it mean to say that two moving objects are a certain distance apart? How do you define spatial separation for two moving objects?

Hint: does simultaneity of measurements have anything to do with it?
 
PeroK said:
There are many ways to answer that! One answer is why not compute the time coordinates just to see?

Another answer is: what does it mean to say that two moving objects are a certain distance apart? How do you define spatial separation for two moving objects?

Hint: does simultaneity of measurements have anything to do with it?

Oh so actually it's ## t'_1 = t'_2 ##, so in that case, ##x_2-x_1 = D + c(t_2 - t_1 ) ## as both sources would emit light simultaneously and hence
$$x_2'-x_1' = \gamma (D + c(t_2 - t_1) - v(t_2 - t_1)$$ and since in O', the event is simultaneous, I got
$$t_2'-t_1' = 0 = \gamma \[ t_2 - t_1 - \frac{v}{c^2} (D + c (t_2 - t_1)) \]$$
which simplifies to $$t_2 - t_1 = \frac{vD}{c(c-v)}$$
Hence substituting for ##t_2 - t_1## I got
$$x_2' - x_1' = \gamma (D + \frac{vD}{c-v} - \frac{v^2 D }{c(c-v})$$
$$x_2' - x_1 ' = \gamma D \frac {c+v}{c}= D \sqrt {\frac{c+v}{c-v}}$$
Did I commit some algebraic mistake or perhaps + and - as an answer were mistaken?
 
romanski007 said:
Oh so actually it's ## t'_1 = t'_2 ##, so in that case, ##x_2-x_1 = D + c(t_2 - t_1 ) ## as both sources would emit light simultaneously and hence
$$x_2'-x_1' = \gamma (D + c(t_2 - t_1) - v(t_2 - t_1)$$ and since in O', the event is simultaneous, I got
$$t_2'-t_1' = 0 = \gamma \[ t_2 - t_1 - \frac{v}{c^2} (D + c (t_2 - t_1)) \]$$
which simplifies to $$t_2 - t_1 = \frac{vD}{c(c-v)}$$
Hence substituting for ##t_2 - t_1## I got
$$x_2' - x_1' = \gamma (D + \frac{vD}{c-v} - \frac{v^2 D }{c(c-v})$$
$$x_2' - x_1 ' = \gamma D \frac {c+v}{c}= D \sqrt {\frac{c+v}{c-v}}$$
Did I commit some algebraic mistake or perhaps + and - as an answer were mistaken?
Have you seen the derivation of length contraction? In any case, you need to be more careful about using ##D = x_2 - x_1##. That's only true if ##x_1, x_2## represent the sources at the same time in the unprimed frame. If you take events which are simultaneous in frame ##S'##, they do not map to events that are simultaneous in frame ##S##, hence do not map to events where ##x_2 - x_1 = D##.

You need to take more care.
 
PeroK said:
Have you seen the derivation of length contraction? In any case, you need to be more careful about using ##D = x_2 - x_1##. That's only true if ##x_1, x_2## represent the sources at the same time in the unprimed frame. If you take events which are simultaneous in frame ##S'##, they do not map to events that are simultaneous in frame ##S##, hence do not map to events where ##x_2 - x_1 = D##.

You need to take more care.

In relation to the attached diagram, I described the position of ##x_1, x_2 ## and hence took their difference, and transformed it to the primed reference frame where ##t' = ## constant
 

Attachments

  • Capture.PNG
    Capture.PNG
    14.1 KB · Views: 167
romanski007 said:
In relation to the attached diagram, I described the position of ##x_1, x_2 ## and hence took their difference, and transformed it to the primed reference frame where ##t' = ## constant
You have too many constraints there: you demand that ##x_2 = x_1 + D## and that ##t'_1 = t'_2##. You cannot have both those equations:
$$t'_1 = t'_2 \ \Rightarrow \ t_1 \ne t_2 \ \Rightarrow \ x_2 \ne x_1 + D$$
 
PS this is even clearer if you take the first event to be the (common) origin of the frames. Then the second event is: ##(0, D)## in the first frame and ##(t'_2, x'_2)## in the second frame, where ##t'_2 \ne 0##.

If you want ##t'_2 = 0##, then you need to choose a different event: ##(t_1, x_1)## where necessarily ##t_1 \ne 0## and ##x_1 \ne D##.
 
  • #10
PeroK said:
You have too many constraints there: you demand that x2=x1+D and that t1′=t2′. You cannot have both those equations:
t1′=t2′ ⇒ t1≠t2 ⇒ x2≠x1+D

Yes, the way I worked it out was by letting ##x_2 = x_0 + D + ct_2 ## and ##x_1 = x_0 + ct_1## so that ##x_2 -x_1 = D + c(t_2 - t_1) ##
 
  • #11
PeroK said:
PS this is even clearer if you take the first event to be the (common) origin of the frames. Then the second event is: ##(0, D)## in the first frame and ##(t'_2, x'_2)## in the second frame, where ##t'_2 \ne 0##.

If you want ##t'_2 = 0##, then you need to choose a different event: ##(t_1, x_1)## where necessarily ##t_1 \ne 0## and ##x_1 \ne D##.

I did it in the first case so that
$$x_2'-x_1' = \gamma (x_2 - x_1 - v (t_2 - t_1) = \gamma D \because t_2 - t_1 = 0 $$ but the final answer impliesthat $$t_2-t_1 = \frac{D}{c} $$
 
  • #12
romanski007 said:
Yes, the way I worked it out was by letting ##x_2 = x_0 + D + ct_2 ## and ##x_1 = x_0 + ct_1## so that ##x_2 -x_1 = D + c(t_2 - t_1) ##

Okay, yes I see that now. Apologies.

You may have done the wrong transformation. The sources are the "moving frame", so you want the inverse transformation.
 
  • Like
Likes   Reactions: romanski007 and TSny

Similar threads

Replies
23
Views
2K
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 7 ·
Replies
7
Views
807