Two Particles Connected by Massless Rod: Dynamics Analysis

Click For Summary

Homework Help Overview

The discussion revolves around the dynamics of two point-like particles connected by a massless rod, particularly focusing on their behavior during a collision with another particle. The problem involves concepts from mechanics, including conservation of momentum and angular momentum, as well as rotational motion.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants are attempting to apply conservation laws to analyze the collision and subsequent motion of the particles. Questions arise regarding the derivation of certain expressions, particularly the origin of the term M(v0 + v) in the context of momentum conservation. Some participants are also exploring the implications of angular momentum conservation before and after the collision.

Discussion Status

The discussion is active, with participants seeking clarification on specific aspects of the problem. There is a focus on ensuring that the assumptions made about the velocities and directions of the particles are correct. Some guidance has been offered regarding the need to consider both linear and angular momentum in the analysis.

Contextual Notes

Participants have noted potential ambiguities in the problem statement, particularly concerning the speed of the colliding particle after the collision. There is also mention of the need to adhere to homework guidelines, emphasizing the importance of showing work and reasoning in the problem-solving process.

Booze
Messages
2
Reaction score
0
New user is reminded to show their work on schoolwork problems at PF
Homework Statement
The particle of mass M collapses with the body of two point-like particles of mass m.
Relevant Equations
Help needed
Two point-like particles of mass m. The particles are rigidly connected to each other with a mass-less rod of length L. The particles are initially at rest in such a way that one particle is at the origin and the other is at the point (0, L). A point-like particle of mass M collides with a particle located at the origin with a speed 𝑣⃗0.

a) After the collision, a particle of mass M bounces straight back to its direction of entry. Show that two m-the center of mass of the body formed by the particle must then move so that 𝑉𝑐𝑚 = 𝑀(𝑣0+𝑣)/2𝑚 .
b) Determine the orbital angular momentum 𝐿⃗⃗ 𝑡𝑟𝑎𝑛𝑠 and the rotation rate 𝐿⃗⃗ 𝑟𝑜𝑡 of the given
using quantities (relative to the origin) before and after the collision. What can you say about the total angular momentum value?
c) Show that after the collision, the body of two m-particles rotates counterclockwise with angular velocity 𝜔 = 𝑀(𝑣0+𝑣)/𝑚𝐿.
 

Attachments

  • wt.PNG
    wt.PNG
    5.3 KB · Views: 134
Physics news on Phys.org
Hello @Booze ,

:welcome: ##\qquad ## !​

Please read the PF homework guidelines. We can only help if you post your attempt at solution.

What have you learned so far that can help you solve this one ?

Oh, and "Help needed" is NOT a relevant equation. :wink:

##\ ##
 
  • Like
Likes   Reactions: phinds and topsquark
in question a) I don't get where does come from M(v0+v)!
i did the law of conservation of momentum before=after. i got that 2m is equel M, but i think it is wrong!
in b) i assumed before collision that Lrot is 0 and Ltrans= r(M) x p(M). and after collision i was thinking that Ltrans=r'(M) x p(M) + Rcm x p(body)=r'(M) x M*v0 +Rcm x Vcm*2m= Rcm*Vcm*2m - r'(M)*M*v=...=LM(v0+v)/m-r'(M)Mv
Vcm u know from a) and i calculate Rcm=mL/2m
i got c) right w=Vcm/Rcm= answer
 
Last edited:
Booze said:
in question a) I don't get where does come from M(v0+v)!
i did the law of conservation of momentum before=after. i got that 2m is equel M, but i think it is wrong!
in b) i assumed before collision that Lrot is 0 and Ltrans= r(M) x p(M). and after collision i was thinking that Ltrans=r'(M) x p(M) + Rcm x p(body)=r'(M) x M*v0 +Rcm x Vcm*2m= Rcm*Vcm*2m - r'(M)*M*v=...=LM(v0+v)/m-r'(M)Mv
Vcm u know from a) and i calculate Rcm=mL/2m
i got c) right w=Vcm/Rcm= answer
Please show how you got your result in part (a), specifically how you applied linear momentum conservation. In part (b) you need to consider angular momentum conservation. What is the total angular momentum about the origin before the collision? Hint: ##\mathbf{L}=\mathbf{r}\times\mathbf{p}##. Part (c) will sort itself out after you have obtained correct answers for parts (a) and (b).
 
Last edited:
Booze said:
I don't get where does come from M(v0+v)!
Neither do I unless you are told that M bounces back with speed v (i.e. a velocity -v). Did you leave that out or is it missing from the original?
 
haruspex said:
Neither do I unless you are told that M bounces back with speed v (i.e. a velocity -v). Did you leave that out or is it missing from the original?
I had the same question about the meaning of v. Then I saw in the figure posted in #1 that M is shown bouncing back with speed v.
 

Similar threads

  • · Replies 71 ·
3
Replies
71
Views
4K
Replies
335
Views
16K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
10
Views
2K
Replies
21
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K