(adsbygoogle = window.adsbygoogle || []).push({}); [Solved]Two planes->x+2y-2z=2 & 2x-3y+6z=3 intersect in straight line l

1. The problem statement, all variables and given/known data

Hi.I've two planes' equation x+2y-2z=2 & 2x-3y+6z=3.The planes intersect in the straight line l. The question:Find a vector equation for the line l.

2. Relevant equations

a.n=0 if they're both perpendicular 2 ea other

r.n=a.n ,where n=perpendicular to both r and a

3 dimensional vector equation formula:{A position vector of line}+t{direction vector of line},where t is a variable.

3. The attempt at a solution

1(x)+2(y)-2(z)=0

1(2)+2(1)-2(2)=0

[tex]\left(\begin{array}{cc}2\\1\\2\end{array}\right)[/tex]

x+2y-2z=2

(2)+2(1)-2(1)=2

[tex]\left(\begin{array}{cc}2\\1\\1\end{array}\right)[/tex]

[tex]r_{1}[/tex]=[tex]\left(\begin{array}{cc}2\\1\\1\end{array}\right)[/tex]+t[tex]\left(\begin{array}{cc}2\\1\\2\end{array}\right)[/tex]

2x-3y+6z=0

2(1)+3(8/3)+6(1)=0

3[tex]\left(\begin{array}{cc}1\\\frac{8}{3}\\1\end{array}\right)[/tex]=[tex]\left(\begin{array}{cc}3\\8\\3\end{array}\right)[/tex]

2x-3y+6z=3

2(3)-3(7)+6(3)=3

[tex]\left(\begin{array}{cc}3\\7\\3\end{array}\right)[/tex]

[tex]r_{2}[/tex]=[tex]\left(\begin{array}{cc}3\\7\\3\end{array}\right)[/tex]+m[tex]\left(\begin{array}{cc}3\\8\\3\end{array}\right)[/tex]

Putting [tex]r_{2}[/tex] in 1st plane cartesian equation getting:

(3+3m)+2(7+8m)-2(3+3m)=2

m=[tex]\left(\begin{array}{cc}\frac{-9}{13}\\\end{array}\right)[/tex]

[tex]r_{2}[/tex]=[tex]\left(\begin{array}{cc}3\\7\\3\end{array}\right)[/tex]+m[tex]\left(\begin{array}{cc}3\\8\\3\end{array}\right)[/tex]

=[tex]\left(\begin{array}{cc}3\\7\\3\end{array}\right)[/tex]+[tex]\left(\begin{array}{cc}\frac{-9}{13}\\\end{array}\right)[/tex][tex]\left(\begin{array}{cc}3\\8\\3\end{array}\right)[/tex]

=[tex]\left(\begin{array}{cc}\frac{12}{13}\\\frac{19}{13}\\\frac{12}{13}\end{array}\right)[/tex]...[tex]\alpha[/tex]

Putting [tex]r_{1}[/tex] into 2nd cartesian equation getting:

2(2+2t)-3(1+t)+6(1+2t)=3

t=[tex]\frac{-4}{13}[/tex]

[tex]r_{1}[/tex]=[tex]\left(\begin{array}{cc}2\\1\\1\end{array}\right)[/tex]+[tex]\left(\begin{array}{cc}\frac{-4}{13}\\\end{array}\right)[/tex][tex]\left(\begin{array}{cc}2\\1\\2\end{array}\right)[/tex]

=[tex]\left(\begin{array}{cc}\frac{18}{13}\\\frac{9}{13}\\\frac{5}{13}\end{array}\right)[/tex]...[tex]\beta[/tex]

[tex]\beta[/tex]-[tex]\alpha[/tex]=[tex]\left(\begin{array}{cc}\frac{18}{13}\\\frac{9}{13}\\\frac{5}{13}\end{array}\right)[/tex]-[tex]\left(\begin{array}{cc}\frac{12}{13}\\\frac{19}{13}\\\frac{12}{13}\end{array}\right)[/tex]=[tex]\frac{1}{13}[/tex][tex]\left(\begin{array}{cc}6\\-10\\-7\end{array}\right)[/tex]

l's vector equation=[tex]\left(\begin{array}{cc}\frac{18}{13}\\\frac{9}{13}\\\frac{5}{13}\end{array}\right)[/tex]+w[tex]\left(\begin{array}{cc}6\\-10\\-7\end{array}\right)[/tex]

Anything wrong thus?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Two planes intersect in a straight line l,how to find the pt on it,(3j,2k)?

**Physics Forums | Science Articles, Homework Help, Discussion**