Two vectors and two perpendicular lines

Click For Summary
SUMMARY

This discussion focuses on calculating the probability that two vectors in ##\mathbb{R}^2##, originating from the same point, do not have a perpendicular line between them. The vectors are represented by points ##(x_1, y_1)## and ##(x_2, y_2)##, with the angle between them denoted as ##\theta##. The probability is derived from the condition that both points lie on the same side of the perpendicular lines defined by their orientations. The final expression for the probability when only one line is considered is given by the integral formula: ##p = \frac{1}{\pi}\int_{0}^{\pi} (\pi -\rho) f_{\theta}(\rho)\mathrm{d}\rho + \frac{1}{\pi}\int_{\pi}^{2\pi} (\rho-\pi) f_{\theta}(\rho)\mathrm{d}\rho##.

PREREQUISITES
  • Understanding of vector geometry in ##\mathbb{R}^2##
  • Knowledge of probability density functions, specifically ##f_{\theta}##
  • Familiarity with integral calculus for probability calculations
  • Concept of Poisson point processes in random point selection
NEXT STEPS
  • Explore the properties of the Poisson point process in two dimensions
  • Learn about the implications of uniform distributions in angular measurements
  • Study the application of integral calculus in probability theory
  • Investigate the relationship between angles and quadrants in vector analysis
USEFUL FOR

Mathematicians, statisticians, and data scientists interested in geometric probability, vector analysis, and the application of probability density functions in multidimensional spaces.

LCDF
Messages
15
Reaction score
0
In ##\mathbb{R}^2##, there are two lines passing through the origin that are perpendicular to each other. The orientation of one of the lines with respect to ##x##-axis is ##\psi \in [0, \pi]##, where ##\psi## is uniformly distributed in ##[0, \pi]##. Also, there are two vectors in ##\mathbb{R}^2## from the origin corresponding to points ##(x_1, y_1)## and ##(x_2, y_2)##. The angle between these vectors is ##\theta \in (0, 2\pi)## measured in anticlockwise direction, and has the probability density function ##f_{\theta}##. I want to calculate the probability that none of the perpendicular lines lies between the two vectors.

My attempt: I notice that this is equivalent to calculating the probability that the two points ##(x_1, y_1)## and ##(x_2, y_2)## lie on the same side of each of the perpendicular lines. In other words, a line does not lie between the two vectors iff ##(a_1x_1 + b_1y_1 +c_1)(a_1x_2 + b_1y_2 +c_2) > 0## AND ##(a_2x_1 + b_2y_1 +c_1)(a_2x_2 + b_2y_2 +c_2) > 0##, where ##a_1x + b_1y +c = 0## and ##a_2x + b_2y +c = 0## are the equations of the lines. But I am unable to obtain an expression for the probability.

For the case of only one line passing through the origin (ignore the second line), the probability that the line does not lie between two vectors is
##p = \frac{1}{\pi}\int_{0}^{\pi} (\pi -\rho) f_{\theta}(\rho)\mathrm{d}\rho + \frac{1}{\pi}\int_{\pi}^{2\pi} (\rho-\pi) f_{\theta}(\rho)\mathrm{d}\rho.##
 
Physics news on Phys.org
How are you selecting the points ##(x_1, y_1)## and ##(x_2, y_2)##?

Introducing ##\psi## may be unnecessary. Why not take the two lines to be the ##x## and ##y## axes?

In any case,the problem reduces to the two points being in the same quadrant, with respect to your axes.
 
PeroK said:
How are you selecting the points ##(x_1, y_1)## and ##(x_2, y_2)##?

Introducing ##\psi## may be unnecessary. Why not take the two lines to be the ##x## and ##y## axes?

In any case,the problem reduces to the two points being in the same quadrant, with respect to your axes.
You are right that the problem reduces to the points being in the same quadrant. But I am unsure how to calculate the probability of it. The points ##(x_1, y_1)## and ##(x_2, y_2)## are the points of the Poisson point process (so they are random), and I know the distribution of the angle between them.
 
LCDF said:
You are right that the problem reduces to the points being in the same quadrant. But I am unsure how to calculate the probability of it. The points ##(x_1, y_1)## and ##(x_2, y_2)## are the points of the Poisson point process, and I know the distribution of the angle between them.
The angle between them doesn't specify the relationship between, say, ##(x_1, y_1)## and your axes. You need to specify how ##(x_1, y_1)## is chosen and then the distribution for ##\theta##.

Are you assuming that ##(x_1, y_1)## is uniformly distributed in the plane?
 
PeroK said:
The angle between them doesn't specify the relationship between, say, ##(x_1, y_1)## and your axes. You need to specify how ##(x_1, y_1)## is chosen and then the distribution for ##\theta##.

Are you assuming that ##(x_1, y_1)## is uniformly distributed in the plane?
Yes, ##(x_1, y_1)## is uniformly distributed in the plane.
 
PeroK said:
The angle between them doesn't specify the relationship between, say, ##(x_1, y_1)## and your axes. You need to specify how ##(x_1, y_1)## is chosen and then the distribution for ##\theta##.

Are you assuming that ##(x_1, y_1)## is uniformly distributed in the plane?
But I am not sure why one needs to specify the location of ##(x_1, y_1)##. For instance, when there is only one line (or, only one axis), the probability that the axis will not lie within the angle ##\theta## is simply ##(\pi - \theta)/\pi## as the axis is oriented uniformly between ##[0, \pi]##. Then one averages over the distribution of ##\theta##. Am I missing something here?
 
LCDF said:
Yes, ##(x_1, y_1)## is uniformly distributed in the plane.
Then ##\psi## is irrelevant. Take the ##x## and ##y## axes. Assume, without loss of generality, that ##(x_1, y_1)## is in the first quadrant, with an angle ##\phi## uniform between ##0## and ##\pi/2##.

For each ##\phi## you need ##\theta## in the ranges ##[0, \frac \pi 2 - \phi)## or ##(2\pi - \phi, 2\pi)##.

Draw a diagram to see this.
 
Last edited:
PeroK said:
Then ##\psi## is irrelevant. Take the ##x## and ##y## axes. Assume, without loss of generality, that ##(x_1, x_2)## is in the first quadrant, with an angle ##\phi## uniform between ##0## and ##\pi/2##.

For each ##\phi## you need ##\theta## in the ranges ##[0, \frac \pi 2 - \phi)## or ##(2\pi - \phi, 2\pi)##.

Draw a diagram to see this.
I get it in the case when ##(x_1, y_1)## is uniformly distributed. But I am not sure why one needs to specify the location of ##(x_1, y_1)##. So, please let me repeat my previous comment in the case you missed it. For instance, when there is only one line (or, only one axis), the probability that the axis will not lie within the angle ##\theta## is simply ##(\pi - \theta)/\pi## for ##\theta \in (0, \pi)## as the axis is oriented uniformly between ##[0, \pi]##. Then one averages over the distribution of ##\theta##. One need not say anything else about ##(x_1, y_1)##. Am I missing something here?
 
LCDF said:
I get it in the case when ##(x_1, y_1)## is uniformly distributed. But I am not sure why one needs to specify the location of ##(x_1, y_1)##. So, please let me repeat my previous comment in the case you missed it. For instance, when there is only one line (or, only one axis), the probability that the axis will not lie within the angle ##\theta## is simply ##(\pi - \theta)/\pi## for ##\theta \in (0, \pi)## as the axis is oriented uniformly between ##[0, \pi]##. Then one averages over the distribution of ##\theta##. One need not say anything else about ##(x_1, y_1)##. Am I missing something here?
That's a different problem.
 
  • #10
LCDF said:
But I am not sure why one needs to specify the location of ##(x_1, y_1)##.

You don't. It's the same in every quadrant. Which is why we can take it to be the first, for simplicity.

It's a form of decluttering the problem.
 
  • Like
Likes   Reactions: LCDF
  • #11
LCDF said:
##p = \frac{1}{\pi}\int_{0}^{\pi} (\pi -\rho) f_{\theta}(\rho)\mathrm{d}\rho + \frac{1}{\pi}\int_{\pi}^{2\pi} (\rho-\pi) f_{\theta}(\rho)\mathrm{d}\rho.##
You should check this when ##f_\theta## is uniformly distributed. It doesn't look right.

If I understand the problem, you have a single line amd a pair of lines separated by an angle ##\theta##. As above, we take the line to be the x-axis, ##(x_1, y_1)## to be above the x-axis at an angle ##\phi##. Then the probability that the second point is also above the x-axis is:
$$p = \int_0^{\pi - \phi} f(\theta) d\theta + \int_{2\pi - \phi}^{2\pi} f(\theta) d\theta$$
And if you check with a uniform ##f(\theta)## you get ##p = \frac 1 2##, as expected.
 
  • #12
PeroK said:
Then ##\psi## is irrelevant. Take the ##x## and ##y## axes. Assume, without loss of generality, that ##(x_1, x_2)## is in the first quadrant, with an angle ##\phi## uniform between ##0## and ##\pi/2##.

For each ##\phi## you need ##\theta## in the ranges ##[0, \frac \pi 2 - \phi)## or ##(2\pi - \phi, 2\pi)##.

Draw a diagram to see this.
You mean ##(x_1,y_1)## instead of ##(x_1, x_2)##?
 
  • #13
LCDF said:
You mean ##(x_1,y_1)## instead of ##(x_1, x_2)##?
Yes, fixed.
 
  • #14
LCDF said:
Yes, ##(x_1, y_1)## is uniformly distributed in the plane.
There is no such thing as a uniform distribution in the plane.
 
  • Like
Likes   Reactions: LCDF and PeroK
  • #15
jbriggs444 said:
There is no such thing as a uniform distribution in the plane.
That's a good point. I guess we could limit it to points at a fixed distance; or, have an arbitrary radial distribution.
 
  • Like
Likes   Reactions: jbriggs444
  • #16
jbriggs444 said:
There is no such thing as a uniform distribution in the plane.
Right. I think saying that the angle is uniform would be accurate.
 
  • #17
PeroK said:
Then ##\psi## is irrelevant. Take the ##x## and ##y## axes. Assume, without loss of generality, that ##(x_1, y_1)## is in the first quadrant, with an angle ##\phi## uniform between ##0## and ##\pi/2##.

For each ##\phi## you need ##\theta## in the ranges ##[0, \frac \pi 2 - \phi)## or ##(2\pi - \phi, 2\pi)##.

Draw a diagram to see this.

I do not see why ##\psi## is irrelevant. A uniformly distributed ##\psi## in ##[0, \pi]## is equivalent to fixing the line as the x-axis and one of the points makes an angle ##\psi## that is uniformly distributed in ##[0, \pi]##. But this is possible only if the orientation of the line is uniformly distributed ##\psi## in ##[0, \pi]##.
 
  • #18
LCDF said:
I do not see why ##\psi## is irrelevant. A uniformly distributed ##\psi## in ##[0, \pi]## is equivalent to fixing the line as the x-axis and one of the points makes an angle ##\psi## that is uniformly distributed in ##[0, \pi]##. But this is possible only if the orientation of the line is uniformly distributed ##\psi## in ##[0, \pi]##.
If ##\psi## is relevant, then ##p## will be a function of ##\psi##.

If you take ##\psi = 0## and ##\psi = \frac \pi 4##, say, and do the calculations, you would get a different answer. Do you expect that? If so, why?

If we haven't understood the problem and you get a different scenario for different ##\psi## then it is relevant. From what I understand the probability should be independent of ##\psi##.
 
  • #19
PeroK said:
If ##\psi## is relevant, then ##p## will be a function of ##\psi##.

If you take ##\psi = 0## and ##\psi = \frac \pi 4##, say, and do the calculations, you would get a different answer. Do you expect that? If so, why?

If we haven't understood the problem and you get a different scenario for different ##\psi## then it is relevant. From what I understand the probability should be independent of ##\psi##.
Your suggestion was very useful, and I obtained the answer based on it. And I agree that the probability should not be dependent on ##\psi##. What I was thinking is that the case of a random line with orientation ##\psi## that is uniformly distributed in ##[0, \pi]## and a fixed point at ##(x_1, y_1)## is equivalent to the case of considering a fixed line as the x-axis and a point whose angle with the x-axis is uniformly distributed in ##[0, \pi]##. Isn't it?

If I am not misunderstood you earlier suggestion, you were exactly implying the second interpretation, while I the first. And I get the desired answer by putting things in your interpretation that matches my simulation while considering a fixed point and a randomly oriented line!
 
Last edited:
  • #20
LCDF said:
If I am not misunderstood you earlier suggestion, you were exactly implying the second interpretation, while I the first. And I get the desired answer by putting things in your interpretation that matches my simulation while considering a fixed point and a randomly oriented line!

I don't understand that. The calculations should be independent of ##\psi##.
 
  • #21
PeroK said:
I don't understand that. The calculations should be independent of ##\psi##.
Certainly, the calculations should be independent of ##\psi## and my answer reflects that. But I now see that it is nature of the randomness in points than the randomness in the orientation. Thanks!
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
24
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
724
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K