U-substitution - Where does the dx go?

  • Thread starter HorseBox
  • Start date
  • #1
25
0

Main Question or Discussion Point

I'm having serious trouble with the concept of u-substitution. Using this as an example
int 2x(x2−1)4
I make u = x2−1
first thing I don't get is why du/dx = 2x is rearranged to du = 2xdx. Second thing I don't get is where the dx dissappears to. In this method is 2xdx just being represented as du? The part that confuses me is how you can represent something in an integrand as the derivative of another term in the integrand. I'm completely lost there.
 

Answers and Replies

  • #2
217
0
It looks better if you write this out:

[tex] \int f(g(x))g'(x)dx = \int f(u) du [/tex]

this is the substitution formula, the [tex] dx [/tex] part is adjusted by [tex] g'(x)dx [/tex]
to act as [tex] du [/tex]

so, 2x is the g'(x) part, x^4 is your f(x) part, and g(x) = x^2 -1
 
  • #3
25
0
Ah that explains it. I wasn't thinking of the dx being replaced by du. Thanks alot. Its funny how something which seemed incomprehendable falls into place in a matter of seconds once after making a small connection. That LaTeX code is fairly cool.
 

Related Threads on U-substitution - Where does the dx go?

Replies
31
Views
7K
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
10
Views
1K
  • Last Post
Replies
2
Views
25K
  • Last Post
Replies
15
Views
2K
  • Last Post
Replies
7
Views
2K
Replies
2
Views
444
  • Last Post
Replies
3
Views
771
Replies
4
Views
7K
Replies
3
Views
5K
Top