I Uncertainty in measurements of the thickness of a pile of pellets

Click For Summary
The discussion focuses on calculating the uncertainty in measurements when stacking HDPE pellets for gamma attenuation experiments. To determine the uncertainty for n pellets, one approach is to consider the propagation of errors, using the formula that relates the uncertainty in a function to the uncertainty in thickness. An alternative method suggested involves measuring the total volume displacement of the pellets in water to estimate average diameter, simplifying the uncertainty calculation. The conversation emphasizes the importance of defining "uncertainty" and the assumptions made about the distribution of pellet thickness. Overall, combining uncertainties requires careful consideration of the measurement methods and statistical principles.
nuclearsneke
Messages
15
Reaction score
5
TL;DR
TL;DNR: how to measure an uncertainty for the thickness of a pile of pellets?
Howdie!

We have been playing around with melting and molding HDPE pellets recently. After that, we measured their diameter and thickiness 5 times each to get an uncertainty. In our experiments we put one pellet between gamma-source and detector and measure its attenuation. After that we place the next pellet on top of the previous and carry out the same measurements. And so on.

My question is:
If each pellet had thickness d with uncertainty delta_d, then how would I calculate the uncertainty for n pellets?

Would it be a square root of the sum of uncertainty squares or sth trickier? Thank you in advance!
 
Last edited by a moderator:
Physics news on Phys.org
That depends how you define "uncertainty " and what you assume about the distribution of thickness for each pellet. In theory, you probably need to combine normal distributions.
 
How about measuring the total volume, by putting them under water and measuring the displacement. Then divide by the number of pellets N and assume spherical. Then you'll get an estimate for the average diameter with only one uncertainty to deal with instead of N independent uncertainties.
 
If each pellet has a thickness ##d## and if you have some function ##f(d)##, then the uncertainty in ##f## is related to the uncertainty in ## d## by the propagation of errors formula: $$\sigma_f^2 = \left( \frac{\partial f}{\partial d}\right)^2 \sigma_d^2$$

So you just write down ##f(d)##, take the partial derivative, square that, and multiply by the variance in ##d## and that gives you the variance in ##f##.
 
Thread 'Why higher speeds need more power if backward force is the same?'
Power = Force v Speed Power of my horse = 104kgx9.81m/s^2 x 0.732m/s = 1HP =746W Force/tension in rope stay the same if horse run at 0.73m/s or at 15m/s, so why then horse need to be more powerfull to pull at higher speed even if backward force at him(rope tension) stay the same? I understand that if I increase weight, it is hrader for horse to pull at higher speed because now is backward force increased, but don't understand why is harder to pull at higher speed if weight(backward force)...

Similar threads

Replies
15
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 48 ·
2
Replies
48
Views
5K
Replies
3
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
2
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K