Uncertainty in Newton's law of cooling

Click For Summary
SUMMARY

The discussion focuses on calculating the uncertainty in the cooling constant (k) using Newton's law of cooling, specifically the equation T(t) = T_A + (T_0 - T_A)e^(-kt). Participants analyze the impact of temperature uncertainties of +/- 0.5 degrees on the calculation of k. The method involves using logarithmic properties to determine uncertainty in ln(T(t) - T_A) and applying root-sum-square approaches for combining uncertainties. The conversation emphasizes the distinction between engineering tolerances and scientific uncertainty calculations.

PREREQUISITES
  • Understanding of Newton's law of cooling
  • Familiarity with logarithmic functions and their properties
  • Knowledge of uncertainty propagation techniques
  • Basic principles of statistical analysis, particularly root-sum-square methods
NEXT STEPS
  • Study uncertainty propagation in logarithmic functions
  • Learn about root-sum-square methods for combining uncertainties
  • Explore advanced applications of Newton's law of cooling in real-world scenarios
  • Investigate the differences between engineering tolerances and scientific uncertainty analysis
USEFUL FOR

Students in physics or engineering, researchers dealing with temperature measurements, and anyone involved in uncertainty analysis in scientific experiments.

sunmoonlight
Messages
8
Reaction score
1
Homework Statement
Uncertainty in Newton's law of cooling
Relevant Equations
T(t) = = 𝑇_𝐴+(𝑇_𝑜−𝑇_𝐴)𝑒^(−𝑘𝑡)
I'm finding the uncertainty of k, given that each temperature has an uncertainty of +/- 0.5 degress.
 
Physics news on Phys.org
sunmoonlight said:
Homework Statement: Uncertainty in Newton's law of cooling
Relevant Equations: T(t) = = 𝑇_𝐴+(𝑇_𝑜−𝑇_𝐴)𝑒^(−𝑘𝑡)

I'm finding the uncertainty of k, given that each temperature has an uncertainty of +/- 0.5 degress.
You will also need approximate values for the temperatures.
Per forum rules, please show some attempt.
 
say the T(O) = 90 +/- 0.5, T(t): 60 +/- 0.5, TA = 10 +/- 0.5, temp difference (T(t) - TA) is 50 degrees +/- 0.5, t= 100s
1. Is the uncertainty for ln (T(t) - TA) = 1/2*(ln50.5 - ln49.5) = +/-0.01?
2. If you substitute the values into the eqt, you get k = (ln50/80)/-100, so what's the uncertainty for k (like how do you find uncertainty involving logs?)
 
sunmoonlight said:
say the T(O) = 90 +/- 0.5, T(t): 60 +/- 0.5, TA = 10 +/- 0.5, temp difference (T(t) - TA) is 50 degrees +/- 0.5, t= 100s
1. Is the uncertainty for ln (T(t) - TA) = 1/2*(ln50.5 - ln49.5) = +/-0.01?
2. If you substitute the values into the eqt, you get k = (ln50/80)/-100, so what's the uncertainty for k (like how do you find uncertainty involving logs?)
There are different concepts of uncertainty. An engineer worried about engineering tolerances would just look at the combinations of the extreme values. A scientist would take the given uncertainties as standard deviations in normal distributions and use root-sum-square approaches to combine them. I assume you are looking for the latter.

Can you find the uncertainty in ##e^{-kt}##?
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
Replies
15
Views
2K
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K