Graduate Understand Convolution, Singularity, Kernel, etc: Math Reading Guide

Click For Summary
Understanding convolution, singularities, and kernels requires a solid foundation in calculus and advanced mathematical concepts. The discussion emphasizes the importance of context, particularly related to vortex theory, when exploring these terms. Recommended resources include the book by Hewitt and Stromberg, although it may be challenging due to its focus on measure theory. Additionally, gaining knowledge in differential geometry and differential equations is suggested for a deeper comprehension of vortex theory. Searching for online lecture notes from universities is advised as a practical way to access relevant information efficiently.
vktsn0303
Messages
30
Reaction score
0
I'm reading a book on vortex methods and I came across the above mentioned terms, however, I don't understand what they mean in mathematical terms. The book seems to be quite valuable with its content and therefore I would like to understand what the author is trying to say using the above mentioned terms in his mathematics. Can someone please tell me what branch of mathematics or what book of mathematics I should read in order to understand these terms? If it helps, I would like to point out that I have a decent understanding of college level calculus.

Thanks in advance!
 
Mathematics news on Phys.org
This is a rather broad question and depends very likely on the context of vortex theory, as I assume you don't want to hear a standard answer on what a singularity is. Could you narrow it down by some context, examples or further explanations? Otherwise it's almost impossible to answer without complaints about what is meant where and by whom.
 
fresh_42 said:
This is a rather broad question and depends very likely on the context of vortex theory, as I assume you don't want to hear a standard answer on what a singularity is. Could you narrow it down by some context, examples or further explanations? Otherwise it's almost impossible to answer without complaints about what is meant where and by whom.
Yes, I agree it's a rather broad question. Sorry about that.
I would actually like to learn about singularities in a strict mathematical sense. So, if I have to learn about convolution, singularity and kernels in particular where should I start looking?

I did google about them a bit, found some information in wikipedia. But I think it would be much better if I knew the basics of whatever it is I have to know to understand convolution, singularity and kernel. That way I would be able to understand the context of application of these concepts.
 
Well, all these belong to calculus in a way. E.g. I've found all terms in the book from Hewitt and Stromberg
https://www.amazon.com/dp/0387901388/?tag=pfamazon01-20
but this isn't quite easy to read as it is mainly based on measure theory, whereas usual college courses proceed along the lines real analysis - vector analysis - complex analysis and maybe followed by function theory and functional analysis. In addition to understand vortex theory, even some basics on differential geometry and differential equations might be needed. So in order to deal with vortex theory in special, it might be more promising to look out for individual papers, that deal with certain questions. Google often leads to lecture notes on certain topics, that can be read in a reasonable amount of time. Many universities provide such notes on the internet. But as a tip: it's better to search via Google rather than on the universities' homepages, as you normally cannot get through to the individual papers by starting on their homepages.
 
fresh_42 said:
Well, all these belong to calculus in a way. E.g. I've found all terms in the book from Hewitt and Stromberg
https://www.amazon.com/dp/0387901388/?tag=pfamazon01-20
but this isn't quite easy to read as it is mainly based on measure theory, whereas usual college courses proceed along the lines real analysis - vector analysis - complex analysis and maybe followed by function theory and functional analysis. In addition to understand vortex theory, even some basics on differential geometry and differential equations might be needed. So in order to deal with vortex theory in special, it might be more promising to look out for individual papers, that deal with certain questions. Google often leads to lecture notes on certain topics, that can be read in a reasonable amount of time. Many universities provide such notes on the internet. But as a tip: it's better to search via Google rather than on the universities' homepages, as you normally cannot get through to the individual papers by starting on their homepages.
Thanks a lot for the information, fresh_42. I'll try to look up lecture notes that are made available online. I think that's the easier way to learn too.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 50 ·
2
Replies
50
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 71 ·
3
Replies
71
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K