Garth
Science Advisor
Gold Member
- 3,580
- 107
No, not yet - its a problem that has been discussed on the GA&C forum.pervect said:Very interesting, I must admit - thanks for the explanation. I don't suppose SCC can explain the galactic rotation curves / dark matter problem any better than GR can (or can it?).
In SCC there is no need for DE and the total matter density is 22% closure. However SCC BBN requires ~20% baryonic closure density to obtain the correct amount of helium. In other words there is no need for exotic non-baryonic DM either.
However the question that leaves is where is all this baryonic matter?
There is no clear answer to this and as such there is just as much a problem with SCC as there is in GR, which leaves the non-baryonic DM unidentified.
One leading contender though is that the majority of the DM in SCC could be in the form of IMBHs of about 102 - 103 solar masses. These would have formed as the end product of PopIII stars of about the same mass range. A few SMBHs would also form that could become proto-galactic nuclei, some of the IMBHs would be gravitationally bound to them and attract uncondensed gas that formed ordinary stars, planets and ISM. The presence of many PopIII stars going SN at an early stage would ionise the IGM and provide early metallicity. The primordial hydrogen and helium is also seeded with relatively high metallicity in freely coasting BBN and that allows PopIII stars of that mass range to form - metallicity is necessary to radiate the heat away.
Well that's my 'hand waving' scenario! Shoot it down if you want!
Garth