Graduate Understanding Dirac Adjoint Derivation & Spinor Transformations

Click For Summary
The discussion focuses on understanding the derivation of the Dirac adjoint and its relation to spinors, Gamma matrices, and Lorentz transformations. The main challenge is demonstrating that the expression s[Λ]† equals γ0S[Λ]-1γ0, which involves the use of Clifford algebra and the properties of the Gamma matrices. Participants discuss how γ0 interacts with the exponential form of the transformation and how it can be absorbed in the calculation, particularly when considering complex Ω. The conversation references specific equations from a Harvard document to clarify these transformations. Overall, the thread highlights the complexities involved in manipulating these mathematical structures within quantum field theory.
nigelscott
Messages
133
Reaction score
4
I am trying to understand the derivation of the Dirac adjoint. I understand the derivation of the following identities involving Spinors, the Gamma matrices and Lorentz transformations:

(Sμν) = γ0Sμνγ0

s[Λ] = exp(ΩμνSμν/2)

s[Λ] = exp(Ωμν(Sμν/2))

The part I'm having trouble with is showing that the last line is also equal to:

γ0S[Λ]-1γ0

Its probably simple but I'm having a mental block with it. Appreciate any help to get me going again.
 
Physics news on Phys.org
You should also dagger the Omega; it can be complex in general. Without doing the calculation myself, it seems you need the Clifford algebra and give an expression for the inverse of S. But this should be in any decent qft book, like Peskin.
 
OK. I have been looking at Equation 103 in http://isites.harvard.edu/fs/docs/icb.topic473482.files/10-spinors.pdf. I don't understand how γ0 get absorbed in the exponential.
 
Well, ##(\gamma^0)^2 = 1##, so for any ##n##, ##(\gamma^0 S_{\mu\nu}\gamma^0)^n = \gamma^0 (S_{\mu\nu})^n \gamma^0##. Using this and the series expression ##\exp x = \sum \frac{x^n}{n!}## should make this clear. But it is not clear to me how this works for general, complex ##\Omega## as haushofer said...
 
OK. So just to verify (neglecting indeces):

γ0(1 + iΩS)γ0

multiplying from left and right gives:

γ0γ0 - iΩγ0Sγ0

= exp(-iΩγ0Sγ0)

correct.
 
Thats what I think (last equal of course up to order ##\Omega^2##).
 
In an inertial frame of reference (IFR), there are two fixed points, A and B, which share an entangled state $$ \frac{1}{\sqrt{2}}(|0>_A|1>_B+|1>_A|0>_B) $$ At point A, a measurement is made. The state then collapses to $$ |a>_A|b>_B, \{a,b\}=\{0,1\} $$ We assume that A has the state ##|a>_A## and B has ##|b>_B## simultaneously, i.e., when their synchronized clocks both read time T However, in other inertial frames, due to the relativity of simultaneity, the moment when B has ##|b>_B##...

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 34 ·
2
Replies
34
Views
5K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 26 ·
Replies
26
Views
5K
  • · Replies 20 ·
Replies
20
Views
2K