B Understanding Entangled Particles in Different Time Frames

BillTre
Science Advisor
Gold Member
2024 Award
Messages
2,675
Reaction score
11,577
Here is something I don't understand which I expect someone here can explain.

If one member of an entangled pair goes on a trip at relativistic speeds, there will be two different frames of observation, with two different elapsed times.
The time frames can get off-set by years, over a long trip.
If one of the pair is interacted with, determining its state, when does this "immediate" effect also determine the state of the other half of the entangled pair (in its different time frame)?

It seems like two different time frames would predict two different times for the second particle to become determined, depending on which time frame was used. Or maybe the "causal" side of the pair sets the interaction?
 
Physics news on Phys.org
It doesn’t matter. If they are spacelike separated then no experiment can distinguish the order
 
  • Like
Likes Demystifier, vanhees71, Vanadium 50 and 1 other person
BillTre said:
Here is something I don't understand which I expect someone here can explain.

If one member of an entangled pair goes on a trip at relativistic speeds, there will be two different frames of observation, with two different elapsed times.
The time frames can get off-set by years, over a long trip.
If one of the pair is interacted with, determining its state, when does this "immediate" effect also determine the state of the other half of the entangled pair (in its different time frame)?

It seems like two different time frames would predict two different times for the second particle to become determined, depending on which time frame was used. Or maybe the "causal" side of the pair sets the interaction?
This is precisely the point about quantum entanglement. It's not enough to postulate a FTL communication mechanism, since there is no absolute sense in which one measurement takes place before the other.

Postulating that the two particles communicate fails on those two points.

QM is silent on how nature achieves correlation of measurements on an entangled pair. There's a discussion of the "possibilities" here:

https://www.physicsforums.com/threads/question-about-an-entanglement-paper.966466/#post-6135402
 
  • Like
Likes vanhees71 and BillTre
QM, or better QFT, tells us precisely, how the correlations are "achieved". It's simply, because the particles are somehow prepared in an entangled state. One example is the decay of a neutral pion ##\pi^0 \rightarrow 2 \gamma##. This creates two photons with momenta ##\vec{k}## and ##-\vec{k}## with total angular-momentum 0 (due to energy-momentum conservation and angular-momentum conservation). This makes an entangled two-photon state
$$|\Psi \rangle = \frac{1}{\sqrt{2}} [\hat{a}^{\dagger}(\vec{k},1) \hat{a}^{\dagger}(-\vec{k},-1)-\hat{a}^{\dagger}(\vec{k},-1) \hat{a}^{\dagger}(-\vec{k},1)]|\Omega \rangle.$$
Here ##\hat{a}^{\dagger}(\vec{k},\lambda)## is the creation operator for a photon with momentum ##\vec{k}## and helicity ##\lambda##. This is an entangled photon state having all the astonishing properties such states have, particularly you can perform experiments violating Bell's inequality and all that. So QT indeed explains, how the correlations come about, namely in this case simply due to entanglement following from conservation laws.
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy

Similar threads

Replies
1
Views
75
Replies
23
Views
1K
Replies
18
Views
2K
Replies
20
Views
2K
Replies
34
Views
3K
Replies
27
Views
2K
Replies
51
Views
4K
Back
Top