haushofer
Science Advisor
- 3,065
- 1,586
PeterDonis said:I'm not sure that's true. Newton-Cartan theory has absolute time and an absolute slicing of the complete manifold into spacelike slices, so the spacetime isn't completely dynamic as it is in GR. (Btw, you said in an earlier post that N-C theory determines the "temporal metric" dynamically; I'm not sure that's true either. There is no gravitational time dilation in N-C theory.)
In NC one has a spatial and temporal metric, which are metric-compatibel defining a connection up to a two-form K. The temporal metric with lower indices is determined by its metric-compatibility. Inverses of these metrics are defined via projective relations, and the temporal metric with upper indices is not fixed by the metric compatibility conditions. One can then impose field equations as one likes in terms of the Riemann/Ricci tensor (the question if these equations can be derived via an action principle is a different matter), and the usual Newton-Cartan field equations are chosen such that all the dynamical metric components and components of the two-form K can be gathered into a Galilei-scalar, known as the Newton potential, and all the other metric components become constant. This last fact is the flat-space content of Newton-Cartan, and is an explicit choice; one could also choose other dynamics such that space is not flat, giving a Galilean theory of gravity with curved space (i.e. the transformations in the tangent space are the Galilei transformations).
Of course, because the field equations of NC just reproduce Newtonian gravity, there will be no time dilation. It also depends on what one calls "dynamics"; usually metric compatibility is not considered to be dynamics.
One could formulate Newton-Cartan theory without the flat space condition, giving an honest BI theory with metrics which are even after gauge-fixing dynamical. The question is if such a theory is always some limiting case of GR. One can also define stringy versions of Newton-Cartan, based on strings or even branes instead of point particles, seeI think the question here is, is GR the *only* possible theory that is BI in the way GR is? (I.e., with a *completely* dynamic spacetime metric.) I don't think anybody really knows the answer to that.
http://arxiv.org/abs/1206.5176
These theories are not the usual Newtonian limits of GR, so in that sense GR (with the possible additional terms to the Einstein Hilbert action as Bien Niehoff mentions) doesn't seem to be the only BI theory.
Last edited: