DarthMatter
- 94
- 10
Let me try to sketch a proof in a more general case.
Theorem: Let g, h be real functions ##\mathbb{R} \rightarrow \mathbb{R}## such that ##\lim_{x\rightarrow a} g(x) = L##, ##\lim_{x\rightarrow L} h(x) = H## with ##L \in \mathbb{R}, H \in \mathbb{R}##. Let further ##g(x) \neq L## for all x in ##\mathbb{R}##. Then ##\lim_{x\rightarrow a} h(g(x)) = \lim_{x\rightarrow L} h(x) ##.
Proof: For any given ##\varepsilon_h > 0##, let ##\delta_h>0## be chosen such that ## |h(x) - H| < \varepsilon_h## for ##0 < |x-L| < \delta_h##.
Let further ##\delta_g ## be chosen such that ## |g(x) - L| < \varepsilon_g=\delta_h## for ## 0 <|x-a| < \delta_g##.
Then ##g(x)\neq L## implies ##|g(x)-L| > 0##.
Therefore ## 0 < |g(x) - L| < \delta_h##, and therefore ##|f(g(x))-H| < \varepsilon_h## for ##0 < |x-a| < \delta_g## for our chosen ##\delta_g##. The last inequalities show that ##\lim_{x\rightarrow a} h(g(x))=H=\lim_{x\rightarrow L} h(x)##.
---
Essentially, if the idea of this proof is correct, it means that ##f(g(x))## will 'spiral into' ##H## as ##g(x)## 'spirals into' L. But when ##g(x)## ever reaches ##L##, you cannot be sure what happens. Probably in can also be proven in a situation where ##g(x)## may reach L, but certainly doesn't in a small intervall around a.
Theorem: Let g, h be real functions ##\mathbb{R} \rightarrow \mathbb{R}## such that ##\lim_{x\rightarrow a} g(x) = L##, ##\lim_{x\rightarrow L} h(x) = H## with ##L \in \mathbb{R}, H \in \mathbb{R}##. Let further ##g(x) \neq L## for all x in ##\mathbb{R}##. Then ##\lim_{x\rightarrow a} h(g(x)) = \lim_{x\rightarrow L} h(x) ##.
Proof: For any given ##\varepsilon_h > 0##, let ##\delta_h>0## be chosen such that ## |h(x) - H| < \varepsilon_h## for ##0 < |x-L| < \delta_h##.
Let further ##\delta_g ## be chosen such that ## |g(x) - L| < \varepsilon_g=\delta_h## for ## 0 <|x-a| < \delta_g##.
Then ##g(x)\neq L## implies ##|g(x)-L| > 0##.
Therefore ## 0 < |g(x) - L| < \delta_h##, and therefore ##|f(g(x))-H| < \varepsilon_h## for ##0 < |x-a| < \delta_g## for our chosen ##\delta_g##. The last inequalities show that ##\lim_{x\rightarrow a} h(g(x))=H=\lim_{x\rightarrow L} h(x)##.
---
Essentially, if the idea of this proof is correct, it means that ##f(g(x))## will 'spiral into' ##H## as ##g(x)## 'spirals into' L. But when ##g(x)## ever reaches ##L##, you cannot be sure what happens. Probably in can also be proven in a situation where ##g(x)## may reach L, but certainly doesn't in a small intervall around a.