Is there a way to distinguish between rational functions that have the same limit at both ends and those that don't? I think I might have answered my own question, but lets say I evaluate a rational function, and it turns out to be a coefficient ratio with no variables (3/2). Does that mean that function will have the same end behavior on both sides?(adsbygoogle = window.adsbygoogle || []).push({});

What is required to have a result of -3/2 at -infinity and 3/2 at +infinity? Does this result occur in rational functions?

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Understanding limits of rational functions at infinity

**Physics Forums | Science Articles, Homework Help, Discussion**