Some inferences are impeccable[/color].
Consider:
(1) John danced if Mary sang, and Mary sang; so John danced.
(2) Every politician is deceitful, and every senator is a politician; so every senator is deceitful.
(3) The tallest man is in the garden; so someone is in the garden.
Such reasoning cannot lead from true premises to false conclusions.[/color] The premises may be false. But a thinker takes no epistemic risk by endorsing the conditional claim: if the premises are true, then the conclusion is true.[/color] Given the premises, the conclusion follows immediately--without any further assumptions that might turn out to be false. By contrast, it would be very risky to infer that John danced, given only the assumption that Mary sang. More interesting examples include:
(4) John danced if Mary sang, and John danced; so Mary sang.
(5) Every hairless biped is a bird, Tweety is a hairless biped; so Tweety can fly.
(6) Every human born before 1850 has died; so every human will die.
Inference (4) is not secure. Suppose John dances whenever Mary sings, and he sometimes dances when Mary doesn't sing. Similarly, (5) relies on unstated assumptions--e.g., that Tweety is not a penguin. Even (6) falls short of the demonstrative character exhibited by (1-3). While laws of nature may preclude immortality, it is conceivable that someone will escape the grim reaper; and the conclusion of (6) goes beyond its premise, even if it is (in some sense) foolish to resist the inference.
Appeals to logical form arose in the context of attempts to say more about this intuitive distinction between impeccable inferences, which invite metaphors of security and immediacy, and inferences that involve a risk of slipping from truth to falsity.[/color]