Understanding One-Sided Ideals in Mathematics

  • Context: MHB 
  • Thread starter Thread starter cbarker1
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around the concept of one-sided ideals in the context of abstract algebra, specifically focusing on the example of sets of matrices in a commutative ring. Participants explore the properties of these ideals, particularly the distinction between left and right ideals, and seek clarification on mathematical notation.

Discussion Character

  • Technical explanation, Conceptual clarification

Main Points Raised

  • Cbarker1 presents an example involving sets of matrices \(L_j\) in \(M_n(R)\) and questions the verification of their properties as left and right ideals.
  • Another participant provides a proof that \(L_j\) is a left ideal by demonstrating that the product of any matrix \(T\) in \(M_n(R)\) with a matrix \(A\) in \(L_j\) remains in \(L_j\).
  • The same participant also shows that \(L_1\) is not a right ideal by providing a specific example of matrices \(A\) and \(T\) that results in a product not contained in \(L_1\).
  • Several participants express a desire to see the mathematical symbols represented clearly, indicating a need for visual clarification of the matrices involved.
  • One participant provides a detailed representation of matrices in \(L_j\) and \(M_n(R)\), along with the product \(TA\), to aid understanding.

Areas of Agreement / Disagreement

There is no explicit consensus on the overall understanding of one-sided ideals, but participants engage in clarifying the properties of \(L_j\) as a left ideal and \(L_1\) as not a right ideal. The discussion includes multiple viewpoints on the clarity of mathematical notation.

Contextual Notes

The discussion does not resolve potential ambiguities in the definitions of left and right ideals, nor does it address any assumptions about the properties of the ring \(R\) or the matrices involved.

cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone,

I am reading the Abstract Algebra Book by Dummit and Foote. I am confusing with this example for one-side ideals. So here is the example:
Let $R$ be a commutative ring with $1 \ne 0$ and let \( n\in \mathbb{Z} \) with $n\ge 2$. For each $j\in \{1,2,\dots, n\}$, let $L_j$ be the set of all $n \times n$ matrices in $M_n(R)$ with arbitrary entries in the jth column and zeroes in all other columns. It is clear that $L_j$ is closed under subtraction. It follows directly from the definition of matrix multiplication that any matrix $T \in M_n(R)$ and $A \in L_j$, the product $TA$ has zero entries in the ith column for all $i\ne j$. This shows $L_j$ is a left ideal of $M_n(R)$. Moreover, $L_j$ is not a right ideal.

What does this example look like with math symbols?

Thanks,
Cbarker1
 
Physics news on Phys.org
Hi Cbarker1,

It's not entirely clear to me what your question is exactly. If you mean you'd like to see verification of the left ideal/non-right ideal claim, that would look something like this.

Proof $L_{j}$ is a Left Ideal
Let $A\in L_{j},$ $T\in M_{n}(R),$ and let $a_{j}$ be the $j$th column of $A$. Then $$TA = T\left[\begin{array}{c|c|c|c|c} 0 & \ldots & a_{j} & \ldots & 0 \end{array}\right] = \left[\begin{array}{c|c|c|c|c} 0 & \ldots & Ta_{j} & \ldots & 0 \end{array}\right],$$ which shows that $TA\in L_{j}$. Hence, $L_{j}$ is a left ideal over $M_{n}(R).$

Proof $L_{1}$ is not a Right Ideal
Let $a_{1} = \begin{bmatrix}1\\ 0\\ \vdots\\ 0 \end{bmatrix},$ $A = \left[\begin{array}{c|c|c|c} a_{1} & 0 &\ldots & 0 \end{array} \right],$ and $T = \left[\begin{array}{c|c|c|c|c} a_{1} & a_{1} & 0 &\ldots & 0 \end{array} \right].$ Then $AT = T\notin L_{1}.$ Hence, $L_{1}$ is not a right ideal over $M_{n}(R).$ This example can be generalized to any $j$, if desired.
 
Physics news on Phys.org
I am trying to see the symbols. Like this: \[ \begin{pmatrix} 1 & 2 & 3\\ a & b & c \end{pmatrix} \].
 
I am trying to see the symbols. Something Like this: \[ \begin{pmatrix} 1 & 2 & 3\\ a & b & c \end{pmatrix} \].
 
OK, let's see if this helps.

A matrix in $L_{j}$ would look be written as $$A = \begin{bmatrix} 0 & \ldots & a_{1j} & \ldots & 0\\ 0 & \ldots & a_{2j} & \ldots & 0\\ \vdots & \ddots & \vdots & \ddots & \vdots\\ 0 & \ldots & a_{nj} & \ldots & 0\end{bmatrix},$$ and a matrix $T\in M_{n}(R)$ would have the form $$T = \begin{bmatrix} t_{11} & \ldots & t_{1j} & \ldots & t_{1n}\\ t_{21} & \ldots & t_{2j} & \ldots & t_{2n}\\ \vdots & \ddots & \vdots & \ddots & \vdots\\ t_{n1} & \ldots & t_{nj} & \ldots & t_{nn}\\\end{bmatrix},$$ where all the $a$'s and $t$'s are elements of $R$. Using these forms for $A$ and $T$, the product $TA$ would be $$TA = \begin{bmatrix}0 & \ldots & t_{11}a_{1j} + t_{12}a_{2j}+ \ldots + t_{1n}a_{nj} & \ldots & 0\\ 0 & \ldots & \vdots & \ldots & 0\\ \vdots & \ddots & \vdots & \ddots & \vdots\\ 0 & \ldots & \ldots & \ldots & 0 \end{bmatrix},$$ where I have left rows $2$ through $n$ of the $j$th column of $TA$ for you to try to fill in for yourself.

Does this answer your question?
 
yes.
 

Similar threads

  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
9K