MHB Understanding Orthogonality in Inner Product Spaces

Click For Summary
In inner product spaces, the condition \( (x,x)=0 \) implies that \( x=0 \). However, if \( (x,y)=0 \), it only indicates that \( x \) and \( y \) are orthogonal, meaning they are perpendicular, or that at least one of them is zero. It does not necessarily mean that both \( x \) and \( y \) must be zero. This distinction is important in understanding the properties of inner product spaces. Overall, orthogonality does not imply that both vectors are null.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We know that:
$$(x,x)=0 \Rightarrow x=0$$

When we have $\displaystyle{(x,y)=0}$, do we conclude that $\displaystyle{x=0 \text{ AND } y=0}$. Or is this wrong? (Wondering)
 
Mathematics news on Phys.org
mathmari said:
Hey! :o

We know that:
$$(x,x)=0 \Rightarrow x=0$$

When we have $\displaystyle{(x,y)=0}$, do we conclude that $\displaystyle{x=0 \text{ AND } y=0}$. Or is this wrong? (Wondering)

Hi hi! (Happy)

In this case we can only say that $x$ and $y$ are perpendicular, or one of them is zero.
Note that $(\hat \imath, \hat \jmath) = 0$. (Wasntme)
 
I like Serena said:
Hi hi! (Happy)

In this case we can only say that $x$ and $y$ are perpendicular, or one of them is zero.
Note that $(\hat \imath, \hat \jmath) = 0$. (Wasntme)

I see! Thanks a lot! (Sun)
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
868
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 8 ·
Replies
8
Views
4K