MHB Understanding Proposition 8.7: Operator Norm and Sequences

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Andrew Browder's book: "Mathematical Analysis: An Introduction" ... ...

I am currently reading Chapter 8: Differentiable Maps and am specifically focused on Section 8.1 Linear Algebra ...

I need some further help in fully understanding the proof of Proposition 8.7 ...Proposition 8.7 and its proof reads as follows:
View attachment 9397
View attachment 9398In the above proof by Browder we read the following:"... ... it follows from Proposition 8.6 that $$S_m \to S$$ for some $$S \in \mathscr{L} ( \mathbb{R}^n)$$. In particular, taking $$m = 0$$ above, we find $$\| I - S_p \| \leq \frac{t}{ 1 - t }$$for every $$p$$, and hence $$\| I - S \| \leq t/(1 - t )$$ ... ...

... ... ... "
My question is as follows:Can someone please explain exactly why/how that $$\| I - S_p \| \leq \frac{t}{ 1 - t }$$for every $$p$$ ... implies that $$\| I - S \| \leq t/(1 - t )$$ ... ... ?In other words if some relation is true for every term of a sequence ... why then is it true for the limit of a sequence ... ...

Help will be much appreciated ...

Peter
 

Attachments

  • Browder - 1 - Proposition 8.7 ... PART 1 ....png
    Browder - 1 - Proposition 8.7 ... PART 1 ....png
    8.4 KB · Views: 130
  • Browder - 2 - Proposition 8.7 ... PART 2 ... ....png
    Browder - 2 - Proposition 8.7 ... PART 2 ... ....png
    7.9 KB · Views: 118
Last edited:
Physics news on Phys.org
Let $\varepsilon>0.$ Since $S_p$ is Cauchy in a complete space, it converges to $S$ in the space. That is, there exists $N>0$ such that for every $n>N,$ we have $\|S_n-S\|<\varepsilon.$ Now then, we have that
\begin{align*}
\|I-S\|&=\|I-S_p+S_p-S\|\\
&\le \|I-S_p\|+\|S_p-S\|\\
&\le \frac{t}{1-t}+\varepsilon.
\end{align*}
Now we are nearly there.

The final step of the argument is something like this. Suppose we have a number $x\ge 0,$ and we let $\delta>0$ be arbitrary. What can we say about $x$ if $x<\delta$ for all $\delta?$ We can actually claim that $x=0.$ For, if $x>0,$ then suppose $\delta=x/2.$ Then $\delta>0,$ but $x=2\delta>\delta,$ contrary to the assumption.

Similarly, for the above argument, because $\varepsilon>0$ is arbitrary, we can conclude that $\|I-S\|\le t/(1-t).$
 
Ackbach said:
Let $\varepsilon>0.$ Since $S_p$ is Cauchy in a complete space, it converges to $S$ in the space. That is, there exists $N>0$ such that for every $n>N,$ we have $\|S_n-S\|<\varepsilon.$ Now then, we have that
\begin{align*}
\|I-S\|&=\|I-S_p+S_p-S\|\\
&\le \|I-S_p\|+\|S_p-S\|\\
&\le \frac{t}{1-t}+\varepsilon.
\end{align*}
Now we are nearly there.

The final step of the argument is something like this. Suppose we have a number $x\ge 0,$ and we let $\delta>0$ be arbitrary. What can we say about $x$ if $x<\delta$ for all $\delta?$ We can actually claim that $x=0.$ For, if $x>0,$ then suppose $\delta=x/2.$ Then $\delta>0,$ but $x=2\delta>\delta,$ contrary to the assumption.

Similarly, for the above argument, because $\varepsilon>0$ is arbitrary, we can conclude that $\|I-S\|\le t/(1-t).$

Thanks Ackbach ...

Your post was most helpful ...

Peter
 
This is a particular case of the general rule that weak inequalities are preserved by limits (but strict inequalities may not be). If $(x_n)$ is a sequence with $$\lim_{n\to\infty}x_n = x$$, and $x_n\leqslant a$ for all $n$, then $x\leqslant a$. (But if $x_n<a$ for all $n$ then it need not be true that $x<a$. All you can assert is that $x\leqslant a$.)
 
Opalg said:
This is a particular case of the general rule that weak inequalities are preserved by limits (but strict inequalities may not be). If $(x_n)$ is a sequence with $$\lim_{n\to\infty}x_n = x$$, and $x_n\leqslant a$ for all $n$, then $x\leqslant a$. (But if $x_n<a$ for all $n$ then it need not be true that $x<a$. All you can assert is that $x\leqslant a$.)
Thanks for a most helpful post, Opalg ... Peter
 
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.
Back
Top