MHB Understanding Sample Proportions and the Binomial Distribution

smallso
Messages
1
Reaction score
0
Hi,

I am doing a past paper but I am kinda stuck on one of the questions.

These are the answers I have:
2a. 225/260 = 0.8654
2b. 32/260 * 4/32 = 0.01407
2c. 32/260 * 28/32 + 228/260 * 221/228 = 0.9577

Then for 2d, I have no idea what to do. Am i suppose to draw one of those probability distribution table? And what does it mean sample proportion of accurate ZikaCheck result?

Thank you very much.
 

Attachments

  • rsz_123431.jpg
    rsz_123431.jpg
    58.5 KB · Views: 100
Mathematics news on Phys.org
Hi smallso,

Have you covered the binomial distribution? Usually when we talk about proportions that are related to two outcomes this involves this distribution. Does that sound familiar?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top