Understanding Spark Production in Dissectable Glass Capacitors

  • Thread starter Thread starter Stryker331
  • Start date Start date
  • Tags Tags
    Capacitor Glass
AI Thread Summary
High voltage can permanently polarize glass in dissectable capacitors, leading to significant surface charges that are not easily discharged. While glass surfaces can hold charge, they are poor conductors, requiring more than simple grounding to discharge. Polarization may not be permanent; it can decay over time, potentially exhibiting both permanent and transient characteristics. Charge can be transferred to insulators through contact, not just friction, with larger contact areas facilitating greater charge transfer. The discussion highlights the conditions necessary for spark generation, emphasizing the role of electric fields and potential differences.
Stryker331
Messages
3
Reaction score
0
Homework Statement
1) A flat capacitor is filled with a dielectric slab made out of glass.
2) The capacitor is connected to a generator which sets the difference of potential between the plates.
3) As a consequence of the external electric field, a polarization is established in the dielectric
4) The capacitor is then disconnected and thus the charge is trapped on the plates
5) The capacitor is dismantled and the plates are completely discharged by grounding both of them.
6) The capacitor is reassembled and not connected to any generator. No friction or force has been applied.
7) We connect two plates of the capacitor with a wire and a spark occurs, so the difference of potential is NOT zero.
8) WHY??
Relevant Equations
P =e0 * X * E (epsilon zero, chi, electric field)
I think a high enough voltage may have permanently polarized the glass.
 

Attachments

Physics news on Phys.org
I would suspect a significant surface charge on each surface of the glass plate.
The surfaces can hold a charge - but are not good at conducting a current - so discharging them would take more than just touching them with a grounded wire.
 
  • Like
Likes Steve4Physics
But only the conductors can be electrified by contact
 
Stryker331 said:
I think a high enough voltage may have permanently polarized the glass.
Sound plausible. Note that you don't need permanent polarisation. The polarisation might decay (maybe exponentially) but with a relatively long half-life. And perhaps you can have a mix of permanent and decaying polarisations.

Stryker331 said:
But only the conductors can be electrified by contact
Not so. You can you charge (for example) glass by rubbing it with a piece of silk, But you don't always need friction - simple contact between a charged piece of metal and an insulator can directly transfer a small amount of charge. And the bigger the contact area, the bigger the amount of charge transferred.
 
But a spark needs a large amount of charge (a large potential difference) to be created
 
Stryker331 said:
But a spark needs a large amount of charge (a large potential difference) to be created
Some questions to think about.
If you have ever worked with a car battery (12V), can it produce a spark?
A spark needs a strong enough electric field. Why (how is a spark produced)?
What two key factors does the electric field between the ends of 2 wires depend on?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top