Understanding the Dot Product and Cross Product in Vector Calculations

Click For Summary

Homework Help Overview

The discussion revolves around understanding the dot product and cross product in vector calculations, particularly in the context of orthonormal vectors. Participants are exploring the relationships and transformations involving these vector operations.

Discussion Character

  • Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants are questioning the nature of vector products, specifically the distinction between dot and cross products. There is confusion regarding expressions like (v1 · v2)v1 and how they relate to cross products. Some are exploring the implications of orthonormal vectors on these operations.

Discussion Status

Several participants are actively engaging with the concepts, offering insights about orthonormality and its effects on dot and cross products. There is a recognition of the relationships between the vectors, but no consensus has been reached on all points of confusion.

Contextual Notes

Participants mention that the vectors are orthonormal, which influences the calculations and relationships being discussed. There is an emphasis on understanding the implications of this property in the context of vector operations.

jolly_math
Messages
51
Reaction score
5
Homework Statement
Let B = (v⃗1, v⃗2, v⃗3) be any basis of R3 consisting of perpendicular unit vectors, such that v⃗3 = v⃗1 × v⃗2. Let T(x⃗) = v⃗1 × x⃗ + (v⃗1 · x⃗)v⃗1. Find the B-matrix B of the given linear transformation T from R3 to R3. Interpret T geometrically.
Relevant Equations
dot product
cross product
1667972360004.png

Could anyone explain the reasoning from step 2 to step 3?

Specifically, I don't understand how to find the product of a cross product and a vector - like (v1 · v2)v1 and (v1 · v3)v1. I'm also confused by v1 × v3 + (v1 · v3)v1 -- is v1 × v3 = v1v3? How would this be added to (v1 · v3)v1?

Thank you.
 
Physics news on Phys.org
jolly_math said:
Specifically, I don't understand how to find the product of a cross product and a vector - like (v1 · v2)v1 and (v1 · v3)v1.
There is no cross product and a vector. There is a dot product and a vector. The dot product is just a scalar multiplying the vector.

jolly_math said:
I'm also confused by v1 × v3 + (v1 · v3)v1 -- is v1 × v3 = v1v3? How would this be added to (v1 · v3)v1?
The vectors are orthonormal so ##\vec v_1\cdot \vec v_3=0##. The expression therefore reduces to ##\vec v_1\times\vec v_3##.
 
  • Like
Likes   Reactions: FactChecker, topsquark and jolly_math
Orodruin said:
There is no cross product and a vector. There is a dot product and a vector. The dot product is just a scalar multiplying the vector.
For the second transformation, v1 x v2 = v3, but what does (v1 · v2)v1 equal?
Orodruin said:
The vectors are orthonormal so ##\vec v_1\cdot \vec v_3=0##. The expression therefore reduces to ##\vec v_1\times\vec v_3##.
Why would ##\vec v_1\times\vec v_3## = ##-\vec v_2##?

Thanks.
 
jolly_math said:
but what does (v1 · v2)v1 equal?
What is ##\vec v_1\cdot \vec v_2## if all ##\vec v_i## are orthonormal?

jolly_math said:
Why would v→1×v→3 = −v→2?
Because you know that the ##\vec v_i## form an orthonormal basis and that ##\vec v_1\times\vec v_2=\vec v_3##.
 
  • Like
Likes   Reactions: topsquark and jolly_math
Orodruin said:
What is ##\vec v_1\cdot \vec v_2## if all ##\vec v_i## are orthonormal?
The dot product would be zero, I understand the second transformation now.

Orodruin said:
Because you know that the ##\vec v_i## form an orthonormal basis and that ##\vec v_1\times\vec v_2=\vec v_3##.
I don't have much experience with cross products, does ##\vec v_1\times\vec v_2=\vec v_3## directly lead to ##\vec v_1\times\vec v_3 = -\vec v_2##?
 
jolly_math said:
I don't have much experience with cross products, does ##\vec v_1\times\vec v_2=\vec v_3## directly lead to ##\vec v_1\times\vec v_3 = -\vec v_2##?
Together with the fact that the ##\vec v_i## are orthonormal, yes.
 
  • Like
Likes   Reactions: topsquark and jolly_math
It makes sense now, thank you!
 
  • Like
Likes   Reactions: berkeman

Similar threads

  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
4K