Understanding the Dot Product and Cross Product in Vector Calculations

Click For Summary
SUMMARY

The discussion focuses on the mathematical operations involving the dot product and cross product of vectors, specifically within the context of orthonormal bases. Participants clarify that the dot product results in a scalar that multiplies a vector, while the cross product yields another vector. Key expressions discussed include the relationships between vectors v1, v2, and v3, where v1 × v2 = v3 and v1 × v3 = -v2, emphasizing the properties of orthonormal vectors.

PREREQUISITES
  • Understanding of vector operations, specifically dot product and cross product
  • Familiarity with orthonormal bases in vector spaces
  • Basic knowledge of linear algebra concepts
  • Ability to manipulate vector equations and expressions
NEXT STEPS
  • Study the properties of orthonormal bases in linear algebra
  • Learn about vector transformations and their geometric interpretations
  • Explore the applications of dot and cross products in physics and engineering
  • Investigate advanced vector calculus techniques, including triple products
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who are looking to deepen their understanding of vector calculations and their applications in various fields.

jolly_math
Messages
51
Reaction score
5
Homework Statement
Let B = (v⃗1, v⃗2, v⃗3) be any basis of R3 consisting of perpendicular unit vectors, such that v⃗3 = v⃗1 × v⃗2. Let T(x⃗) = v⃗1 × x⃗ + (v⃗1 · x⃗)v⃗1. Find the B-matrix B of the given linear transformation T from R3 to R3. Interpret T geometrically.
Relevant Equations
dot product
cross product
1667972360004.png

Could anyone explain the reasoning from step 2 to step 3?

Specifically, I don't understand how to find the product of a cross product and a vector - like (v1 · v2)v1 and (v1 · v3)v1. I'm also confused by v1 × v3 + (v1 · v3)v1 -- is v1 × v3 = v1v3? How would this be added to (v1 · v3)v1?

Thank you.
 
Physics news on Phys.org
jolly_math said:
Specifically, I don't understand how to find the product of a cross product and a vector - like (v1 · v2)v1 and (v1 · v3)v1.
There is no cross product and a vector. There is a dot product and a vector. The dot product is just a scalar multiplying the vector.

jolly_math said:
I'm also confused by v1 × v3 + (v1 · v3)v1 -- is v1 × v3 = v1v3? How would this be added to (v1 · v3)v1?
The vectors are orthonormal so ##\vec v_1\cdot \vec v_3=0##. The expression therefore reduces to ##\vec v_1\times\vec v_3##.
 
  • Like
Likes FactChecker, topsquark and jolly_math
Orodruin said:
There is no cross product and a vector. There is a dot product and a vector. The dot product is just a scalar multiplying the vector.
For the second transformation, v1 x v2 = v3, but what does (v1 · v2)v1 equal?
Orodruin said:
The vectors are orthonormal so ##\vec v_1\cdot \vec v_3=0##. The expression therefore reduces to ##\vec v_1\times\vec v_3##.
Why would ##\vec v_1\times\vec v_3## = ##-\vec v_2##?

Thanks.
 
jolly_math said:
but what does (v1 · v2)v1 equal?
What is ##\vec v_1\cdot \vec v_2## if all ##\vec v_i## are orthonormal?

jolly_math said:
Why would v→1×v→3 = −v→2?
Because you know that the ##\vec v_i## form an orthonormal basis and that ##\vec v_1\times\vec v_2=\vec v_3##.
 
  • Like
Likes topsquark and jolly_math
Orodruin said:
What is ##\vec v_1\cdot \vec v_2## if all ##\vec v_i## are orthonormal?
The dot product would be zero, I understand the second transformation now.

Orodruin said:
Because you know that the ##\vec v_i## form an orthonormal basis and that ##\vec v_1\times\vec v_2=\vec v_3##.
I don't have much experience with cross products, does ##\vec v_1\times\vec v_2=\vec v_3## directly lead to ##\vec v_1\times\vec v_3 = -\vec v_2##?
 
jolly_math said:
I don't have much experience with cross products, does ##\vec v_1\times\vec v_2=\vec v_3## directly lead to ##\vec v_1\times\vec v_3 = -\vec v_2##?
Together with the fact that the ##\vec v_i## are orthonormal, yes.
 
  • Like
Likes topsquark and jolly_math
It makes sense now, thank you!
 

Similar threads

  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
4K