What is the formula for the norm of a vector cross product?

  • #1
Lambda96
171
63
Homework Statement
Use the identity ##\epsilon_{ijk} \epsilon_{ilm} = \delta_{jl} \delta_{km} - \delta_{jm} \delta_{kj}## to proof ##||\vec{a} \times \vec{b}||=||\vec{a}|| \cdot ||\vec{b}|| \sin{\alpha}##
Relevant Equations
##\epsilon_{ijk} \epsilon_{ilm} = \delta_{jl} \delta_{km} - \delta_{jm} \delta_{kj}##
Hi everyone,

I'm having problems with task c

Bildschirmfoto 2023-11-16 um 11.04.05.png

In the task, the norm has already been defined, i.e. ##||\vec{c}||=\sqrt{\langle \vec{c}, \vec{c} \rangle }## I therefore first wanted to calculate the scalar product of the cross product, i.e. ##\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle## first

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = \epsilon_{ijk}a^{i}b^{j} \vec{e}_k \cdot \epsilon_{ijk}a^{i}b^{j} \vec{e}_k$$
$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = \epsilon_{ijk}a^{i}b^{j} \cdot \epsilon_{ijk}a^{i}b^{j}$$
$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = \epsilon_{ijk} \epsilon_{ijk} ||a^{i}||^2 ||b^{j}||^2 $$

If I look at my calculation now, I've definitely made a mistake, but I don't know how else to arrive at the desired result.
I know I didn't use the identity ##\epsilon_{ijk} \epsilon_{ilm} = \delta_{jl} \delta_{km} - \delta_{jm} \delta_{kj}##, but if I take the scalar product with itself, the epsilon would be ##\epsilon_{ijk} \epsilon_{ijk}## and not ##\epsilon_{ijk} \epsilon_{ilm}##, or not?
 
Physics news on Phys.org
  • #3
How about starting with what is given?
\begin{align*}
\langle \mathrm{a}\times \mathrm{b}\ ,\ \mathrm{a}\times \mathrm{b} \rangle&=\epsilon_{ijk}\,a^i\,b^j\, \epsilon_{lmn}\,a^l\,b^m \,\langle \mathrm{e}_k\ ,\ \mathrm{e}_n \rangle\\
&=\epsilon_{ijk}\,a^i\,b^j\, \epsilon_{lmk}\,a^l\,b^m= \epsilon_{kij}\,\epsilon_{klm}\,a^i\,b^j\,a^l\,b^m\\
&=(\delta_{il}\delta_{jm} - \delta_{jk} \delta_{km})\,a^i\,b^j\,a^l\,b^m \\
&=a^i\,b^j\,a^i\,b^j \,-\, a^i\,b^k\,a^l\,b^k
&=\ldots
\end{align*}
... if I made no mistakes. I think your mistake was in the formula under "relevant equations". It should have been $$\epsilon_{ijk}\epsilon_{ilm}=\delta_{jl} \delta_{km}- \delta_{jm} \delta_{kl} $$ like in ##\delta_{22} \delta_{33}- \delta_{23} \delta_{32}.##
 
  • Like
Likes Lambda96
  • #4
fresh_42 said:
How about starting with what is given?
\begin{align*}
\langle \mathrm{a}\times \mathrm{b}\ ,\ \mathrm{a}\times \mathrm{b} \rangle&=\epsilon_{ijk}\,a^i\,b^j\, \epsilon_{lmn}\,a^l\,b^m \,\langle \mathrm{e}_k\ ,\ \mathrm{e}_n \rangle\\
&=\epsilon_{ijk}\,a^i\,b^j\, \epsilon_{lmk}\,a^l\,b^m= \epsilon_{kij}\,\epsilon_{klm}\,a^i\,b^j\,a^l\,b^m\\
&=(\delta_{il}\delta_{jm} - \delta_{jk} \delta_{km})\,a^i\,b^j\,a^l\,b^m \\
&=a^i\,b^j\,a^i\,b^j \,-\, a^i\,b^k\,a^l\,b^k
&=\ldots
\end{align*}
... if I made no mistakes.
Typo, but the final expression violates the third commandment.
fresh_42 said:
I think your mistake was in the formula under "relevant equations".
That is a typo, yes, but there are worse mistakes as well.
 
Last edited by a moderator:
  • Like
Likes Lambda96
  • #5
Thank you Orodruin and fresh_42 for your help 👍👍

Thanks also Orodruin for the link, it helped me a lot 👍

I have now proceeded as follows:

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = \bigl( \vec{a} \times \vec{b} \bigr)_i \cdot \bigl( \vec{a} \times \vec{b} \bigr)_i$$

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = \epsilon_{ijk} a^{j}b^{k} \epsilon_{ilm} a^{l} b^{m}$$

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = \epsilon_{ijk} \epsilon_{ilm} a^{j}b^{k} a^{l} b^{m}$$$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = \bigl( \delta_{jl} \delta_{km} -\delta_{jm} \delta_{kl} \bigr) a^{j}b^{k} a^{l} b^{m}$$

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = \delta_{jl} \delta_{km} a^{j}b^{k} a^{l} b^{m} -\delta_{jm} \delta_{kl} a^{j}b^{k} a^{l} b^{m} $$

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = a^{l}b^{m} a^{l} b^{m} - a^{m}b^{l} a^{l} b^{m}$$

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle =\bigl( \vec{a} \cdot \vec{a} \bigr) \bigl( \vec{b} \cdot \vec{b} \bigr) - \bigl( \vec{a} \cdot \vec{b} \bigr) \cdot \bigl( \vec{a} \cdot \vec{b} \bigr) $$$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = ||\vec{a}||^2 \cdot ||\vec{b}||^2 - ||\vec{a}||^2 \cdot ||\vec{b}||^2 \cos^2{\alpha}$$

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = ||\vec{a}||^2 \cdot ||\vec{b}||^2 \bigl( 1 - \cos^2{\alpha} \bigr) $$

$$\langle \vec{a} \times \vec{b} , \vec{a} \times \vec{b} \rangle = ||\vec{a}||^2 \cdot ||\vec{b}||^2 \sin^2{\alpha}$$

$$|| \vec{a} \times \vec{b}|| = ||\vec{a}|| \cdot ||\vec{b}|| \sin{\alpha}$$
 
  • Like
Likes Orodruin
  • #6
It's a bit simpler to use the index-free calculus in this case and use the additional rule
$$\vec{u} \cdot (\vec{v} \times \vec{w})=(\vec{u} \times \vec{v}) \cdot \vec{w}.$$
Setting ##\vec{u}=\vec{a} \times \vec{b}## and ##\vec{v}=\vec{a}## and ##\vec{w}=\vec{b}## this gives
$$(\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b}) =[ (\vec{a} \times \vec{b})\times \vec{a}] \cdot \vec{b}.$$
Now you use the formula for the triple vector product (which is equivalent to the given formula for the Levi-Civita symbols),
$$(\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b}) = [\vec{b} (\vec{a} \cdot \vec{a}) - \vec{a} (\vec{a} \cdot \vec{b}] \cdot \vec{b} = \|vec{a} \|^2 \|\vec{b}|^2 [1-\cos^2 \angle (\vec{a},\vec{b})]=\|\vec{a}|^2 \|\vec{b} \|^2 \sin^2 \angle (\vec{a},\vec{b}).$$
Since by definite ##\angle(\vec{a},\vec{b}) \in [0,\pi]## the sine is ##\geq 0## and thus
$$\|\vec{a} \times \vec{b} \| = \|\vec{a} \| \|\vec{b} \| \sin \angle(\vec{a},\vec{b}).$$
 
Last edited by a moderator:

Similar threads

  • Calculus and Beyond Homework Help
Replies
3
Views
1K
  • Calculus and Beyond Homework Help
Replies
9
Views
828
Replies
6
Views
665
  • Calculus and Beyond Homework Help
Replies
1
Views
586
  • Calculus and Beyond Homework Help
Replies
5
Views
912
  • Calculus and Beyond Homework Help
Replies
1
Views
1K
  • Calculus and Beyond Homework Help
Replies
10
Views
5K
  • Calculus and Beyond Homework Help
Replies
3
Views
2K
  • Calculus and Beyond Homework Help
Replies
9
Views
2K
  • Calculus and Beyond Homework Help
Replies
4
Views
846
Back
Top