Understanding the Poynting Theorem

  • Thread starter Thread starter MatinSAR
  • Start date Start date
MatinSAR
Messages
673
Reaction score
204
Homework Statement
Derive related equation using maxwell equations and describe each term.
Relevant Equations
Poynting Theorem.
Hello, I have two questions. First, when deriving ##\nabla \cdot \mathbf{S} = -\frac{\partial u}{\partial t} - \mathbf{J} \cdot \mathbf{E} ##, should we consider a linear medium? When we subtract ##\mathbf{E} \cdot (\nabla \times \mathbf{H})## from ## \mathbf{H} \cdot (\nabla \times \mathbf{E})##, we get ##-\mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t} - \mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t} - \mathbf{J} \cdot \mathbf{E}##. Knowing that ##\frac{d}{dt} (\mathbf{H} \cdot \mathbf{B}) = \frac{d}{dt} \mathbf{H} \cdot \mathbf{B} + \mathbf{H} \cdot \frac{d}{dt} \mathbf{B}##, for a linear medium with ##\mathbf B=\mathbf {\mu} \mathbf H## we can rewrite ## \mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t}## as ##\frac{1}{2} \frac{d}{dt} (\mathbf{H} \cdot \mathbf{B})## or ##\frac{d}{dt} u_B ## because for a linear medium we can say that ##\frac{d}{dt} \mathbf{H} \cdot \mathbf{B}=\mathbf{H} \cdot \frac{d}{dt} \mathbf{B}##.

Applying the same process for the ##\mathbf E## part, we can derive the ##\frac{d}{dt} \mathbf{u_E}## term. Then we write ##\mathbf u=\mathbf{u_E} + \mathbf{u_B}##.
Is my understanding correct?

Second question: Is ##\nabla \cdot \mathbf{S}## the net energy flux passing a point? What does the term ##- \mathbf{J} \cdot \mathbf{E}## represent? I know that ##\mathbf{J} \cdot \mathbf{E}## is the work done by the field to move charges, but what does the negative sign indicate?
 
Last edited:
Physics news on Phys.org
MatinSAR said:
Homework Statement: Derive related equation using maxwell equations and describe each term.
Relevant Equations: Poynting Theorem.

Second question: Is ∇⋅S the net energy flux passing a point? What does the term −J⋅E represent? I know that J⋅E is the work done by the field to move charges, but what does the negative sign indicate?
Divergence is generation of energy. The sum of the three equals zero means energy conservation.
 
anuttarasammyak said:
Divergence is generation of energy.
Like when we have an emf in the region?
 
Yes, decrease of u generates S to go.
 
anuttarasammyak said:
Yes, decrease of u generates S to go.
Thank you for your help.
 
  • Like
Likes anuttarasammyak
MatinSAR said:
Homework Statement: Derive related equation using maxwell equations and describe each term.
Relevant Equations: Poynting Theorem.

Hello, I have two questions. First, when deriving ∇⋅S=−∂u∂t−J⋅E, should we consider a linear medium?
Permeability is defined by ratio of B and H. It is not always constant but can be complex function of multi-variables as ferro magnetism shows. Here its zero time derivative ,i.e. constant as for time, is used.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top