Understanding the Q Factor in Parallel Resonant Circuits

Click For Summary
The discussion clarifies the Q factor in parallel resonant circuits, noting that while the Q factor of the inductor and the entire parallel LC tank circuit are closely related, they are not identical. The formula Q = wL/R applies to the inductor, where R is the inductor's series resistance, but the overall Q factor for the tank circuit can differ based on component quality. High-quality capacitors minimize losses, making the inductor's resistance more significant in determining the circuit's Q factor. The conversion of the inductor's series resistance to parallel resistance using Rp = R/Q^2 simplifies analysis in circuit design. Understanding these relationships is crucial for accurate circuit performance evaluation.
appoos
Messages
2
Reaction score
0
hi there..in some places, i saw the usage "the Q factor of parallel LC tank ckt" while in some others, the Q factor of the inductor used in tank ckt is given..are they same??
As far as i know,Q=wL/R is the thing for inductor ,where R is inductor's series resistance..is the formula same for the entire parallel tank ckt??

Also, i would like to know why, during analysis, do we convert series R of inductor to parallel resistance by formula, Rp =R/Q^2 ??
 
Last edited:
Engineering news on Phys.org
appoos said:
hi there..in some places, i saw the usage "the Q factor of parallel LC tank ckt" while in some others, the Q factor of the inductor used in tank ckt is given..are they same??
Close to being the same. Low-loss capacitors are easy to find, so most of the losses are in the coil.
As far as i know,Q=wL/R is the thing for inductor ,where R is inductor's series resistance..is the formula same for the entire parallel tank ckt??
Practically, provided you use high quality capacitors. But that's not DC resistance.
Also, i would like to know why, during analysis, do we convert series R of inductor to parallel resistance by formula, Rp =R/Q^2 ??
It probably makes analysis easier.

Welcome to PF.
 
thank you..
 
I am trying to understand how transferring electric from the powerplant to my house is more effective using high voltage. The suggested explanation that the current is equal to the power supply divided by the voltage, and hence higher voltage leads to lower current and as a result to a lower power loss on the conductives is very confusing me. I know that the current is determined by the voltage and the resistance, and not by a power capability - which defines a limit to the allowable...

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
44
Views
6K
  • · Replies 40 ·
2
Replies
40
Views
6K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K