Understanding the Ratio Test for Series and Its Applications

Click For Summary
The discussion revolves around applying the ratio test to the series defined by the terms b_n, where b_1 = 5 and b_n = (-1)^{n} n b_{n-1} / (3n + 1) for n ≥ 2. Participants initially struggle to express the series explicitly and identify a pattern in the terms. After simplifying the ratio of consecutive terms, they determine that the limit approaches 1/3, indicating convergence since L < 1. The conversation highlights the importance of correctly applying the ratio test and understanding the implications of limits in series convergence. Ultimately, the series converges based on the findings from the ratio test.
woopydalan
Messages
18
Reaction score
15
Homework Statement
Use the ratio test for the series ##\sum_{n=1}^{\infty} b_{n}## where ##b_{1} = 5## and ##b_{n}= \frac {(-1)^{n}nb_{n-1}}{3n+1}## for ##n \geq 2##
Relevant Equations
ratio test: ##L = \lim_{n \to \infty} \lvert \frac {a_{n+1}}{a_{n}} \rvert## will converge if ##L < 1## and will diverge if ##L > 1##
So I am having some difficulty expressing this series explicitly. I just tried finding some terms

##b_{0} = 5##

I am assuming I am allowed to use that for ##b_{1}## for the series, even if the series begins at ##n=1##? With that assumption, I have

##b_{1} = -\frac {5}{4}##
##b_{2} = - \frac{5}{14}##
##b_{3} = \frac {3}{28}##
## b_{4} = \frac {3}{91}##

I am not seeing a pattern. I also alternatively tried using the ratio test not in explicit terms

##\lim_{n \to \infty} \lvert \frac {(-1)^{n+1}(n+1)b_{n}}{3(n+1)+1} \cdot \frac {3n+1}{(-1)^{n}nb_{n-1}} \rvert## and after substituting I ended up with ##\lvert \frac{b_{n}}{b_{n-1}} \rvert## which to me is inconclusive.
 
Last edited:
Physics news on Phys.org
woopydalan said:
Homework Statement:: Use the ratio test for the series ##\sum_{n=1}^{\infty} b_{n}## where ##b_{1} = 5## and ##b_{n}= \frac {(-1)^{n}nb_{n-1}}{3n+1}## for ##n \geq 2##
Relevant Equations:: ratio test: ##L = \lim_{n \to \infty} \lvert \frac {a_{n+1}}{a_{n}} \rvert## will converge if ##L < 1## and will diverge if ##L > 1##

So I am having some difficulty expressing this series explicitly. I just tried finding some terms
You're making this way too complicated.
$$b_{n}= \frac {(-1)^{n}nb_{n-1}}{3n+1} \quad \Rightarrow \quad \frac{b_{n}}{b_{n-1}}= \frac {(-1)^{n}n}{3n+1}$$
 
  • Like
Likes woopydalan
Oh wow...let me try that
 
Ok, so now I got ##\lim_{n \to \infty} \frac {n}{3n+1}## which would be indeterminate??
 
Do you mean indeterminate in the sense that the limit is ##\infty/\infty## or do you mean the convergence of the series can't be determined?
 
I think in both senses
 
Hint:
\lim_{n \to \infty} \frac{an+b}{cn+d} = \lim_{n \to \infty} \frac{a + \frac{b}{n}}{c + \frac{d}{n}} = \frac{a}{c} for c \neq 0.
 
Alright, so 1/3, so L < 1, so converges