MHB Understanding the Relationship between Angles & Diagonals in a Polygon

highmath
Messages
35
Reaction score
0
There a relationships between angles to diagonals in a polygon?
 
Mathematics news on Phys.org
Welcome to MHB!

Do you have any particular polygons in mind?
 
Can we start with pentagon?
What can I say on the pentagon itself, the angles of it, and diagonal?
I do a presentation and the topic of it is as above: "relationships between angles and diagonal". I want to show the topic and investigate it.
I don't get a mark on the presentation. It is only for adult course in the center... (community center)
So what do you say?
Thanks for any help...
 
A convex polygon with \(n\) sides has \(n\) vertices, and a diagonal can be drawn from each vertex to all but 2 of the other vertices. Iterating over all vertices, and observing the diagonals will be drawn twice, we may hypothesize that the number of diagonals \(D_n\) is given by:

$$D_n=\frac{n(n-3)}{2}$$ where \(3\le n\)

Observing the base case \(D_3=0\) is true, for a triangle has no diagonals, we may use as our inductive step, the addition of another vertex. From this new vertex, diagonals may be drawn to all but \(n-2\) of the other vertices and a new diagonal may now be drawn between the two existing vertices on either side of the new vertex, for a total of \(n-1\) new diagonals. Hence:

$$D_{n+1}=\frac{n(n-3)}{2}+n-1=\frac{n(n-3)+2(n-1)}{2}=\frac{n^2-n-2}{2}=\frac{(n+1)(n-2)}{2}=\frac{(n+1)((n+1)-3)}{2}$$

We have derived \(D_{n+1}\) from \(D_n\), thereby completing the proof by induction.
 
highmath said:
There a relationships between angles to diagonals in a polygon?
...and at how many other sites did you post this?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top