I Understanding Ultrasound Blocking: Effects on Energy, Reflection, and Absorption

  • I
  • Thread starter Thread starter ChrisCOD
  • Start date Start date
  • Tags Tags
    Ultrasound
AI Thread Summary
Placing an aluminum plate between an ultrasound device and its target will significantly affect the ultrasound's ability to reach the target due to reflection and absorption. The aluminum will reflect a portion of the ultrasound energy, while the remaining energy may be absorbed by the plate, depending on the frequency and intensity of the ultrasound. The surrounding air also influences the transmission, as it has a different acoustic impedance compared to aluminum. The exact amount of energy reaching the target can be calculated by considering these factors, including the specific parameters of the ultrasound. Understanding these interactions is crucial for applications utilizing focused ultrasound technology.
ChrisCOD
Messages
23
Reaction score
1
Please repost this in the schoolwork forums and show your work
TL;DR Summary
Ways of blocking ultrasound
Hello. I have a question in relation to blocking ultrasound. Suppose we have a device which emits ultrasound. Lets suppose that is is focused ultrasound, and it emits it towards a target at a displaced location. The question is, if you place an aluminum plate between the target location and the device, supposing further that the surrounding medium of the aluminum plate is air, what will happen with respect to the ultrasounds ability to reach the target point?

Suppose you characterize the ultrasound in accordance with various parameters such as frequency, intensity, energy and potentially other parameters. How much of the original ultrasound energy would reach the target point considering the aluminum plate that sits between the device and the target point? Include in your answer consideration of reflection as well as absorption and any other mechanisms for the interaction with the ultrasound.
 
Physics news on Phys.org
ChrisCOD said:
Include in your answer consideration of reflection as well as absorption and any other mechanisms for the interaction with the ultrasound.
That doesn't sound like a question you came up with. You should post it in the homework forum with an attempt at a solution.
 
  • Like
Likes Vanadium 50 and russ_watters
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Maxwell’s equations imply the following wave equation for the electric field $$\nabla^2\mathbf{E}-\frac{1}{c^2}\frac{\partial^2\mathbf{E}}{\partial t^2} = \frac{1}{\varepsilon_0}\nabla\rho+\mu_0\frac{\partial\mathbf J}{\partial t}.\tag{1}$$ I wonder if eqn.##(1)## can be split into the following transverse part $$\nabla^2\mathbf{E}_T-\frac{1}{c^2}\frac{\partial^2\mathbf{E}_T}{\partial t^2} = \mu_0\frac{\partial\mathbf{J}_T}{\partial t}\tag{2}$$ and longitudinal part...
Thread 'Recovering Hamilton's Equations from Poisson brackets'
The issue : Let me start by copying and pasting the relevant passage from the text, thanks to modern day methods of computing. The trouble is, in equation (4.79), it completely ignores the partial derivative of ##q_i## with respect to time, i.e. it puts ##\partial q_i/\partial t=0##. But ##q_i## is a dynamical variable of ##t##, or ##q_i(t)##. In the derivation of Hamilton's equations from the Hamiltonian, viz. ##H = p_i \dot q_i-L##, nowhere did we assume that ##\partial q_i/\partial...
Back
Top