MHB Understanding Vectors: Properties and Applications

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey!

Let $1\leq n\in \mathbb{N}$, $V=\mathbb{R}^n$ and $\cdot$ the standard scalar multiplication. Let $b_1, \ldots , b_k\in V$ such that $$b_i\cdot b_j=\delta_{ij}$$
  1. Let $\lambda_1, \ldots , \lambda_k\in \mathbb{R}$. Determine $\displaystyle{\left (\sum_{i=1}^k\lambda_i b_i\right )\cdot b_j}$ for$1\leq j\leq k$.
  2. Show that $b_1, \ldots , b_k$ are linear independent and that $k\leq n$.
  3. Let $k=n$. Show that $B=(b_1, \ldots , b_n)$ is a basis of $V$ and it holds that $\displaystyle{v=\sum_{i=1}^n(v\cdot b_i)b_i}$ for all $v\in V$.
  4. Let $k=n$. Show that $a=(b_1\mid \ldots \mid b_n)\in O_n$.

I have done the following:

For 1:
We have that $$\left (\sum_{i=1}^k\lambda_i b_i\right )\cdot b_j=\sum_{i=1}^k\lambda_i \left (b_i\cdot b_j\right )=\lambda_j$$ or not? :unsure: For 2:
We have that $$\sum_{i=1}^k\lambda_i b_i=0 \ \overset{\cdot b_j}{\longrightarrow} \ \left (\sum_{i=1}^k\lambda_i b_i\right )\cdot b_j=0\cdot b_j \ \overset{\text{ Question } 1.}{\longrightarrow} \ \lambda_j=0$$ for all $1\leq j\leq k$, and so $b_1, \ldots , b_k$ are linear independent.
Is this correct?

How can we show that $k\leq n$? :unsure: For 3:
We have that the vectors of $B$ are linear independent, according to question 2, and the number of vectors equals the dimension of $V$. This imply that $B$ is a basis of $V$, right?
Since $B$ is a basis of $V$, every element of $V$ can be written as a linear combination of the elements of $B$. But why is this linear combination $\displaystyle{v=\sum_{i=1}^n(v\cdot b_i)b_i}$ ? Is this because of the definition of $b_i$, i.e. that $b_i\cdot b_i=1$ ? :unsure:For 4:
To show that the matrix $a$ is orthogonal, we have to show that $a^Ta=I=aa^T$ using the definition os the vectors $b_i$, i.e. that $b_i\cdot b_i=1$ and $b_i\cdot b_j=0$ fr $i\neq j$, right? :unsure:
 
Physics news on Phys.org
mathmari said:
For 1:
We have that $$\left (\sum_{i=1}^k\lambda_i b_i\right )\cdot b_j=\sum_{i=1}^k\lambda_i \left (b_i\cdot b_j\right )=\lambda_j$$ or not?

Hey mathmari!

Yep. :)

mathmari said:
For 2:
Is this correct?

How can we show that $k\leq n$?

Correct yes.

Hmm... I don't see an easy way to show that $k\le n$. :unsure:
Then again, perhaps we can use the property that a set of independent vectors in an $n$-dimensional vector space can have at most $n$ independent vectors? 🤔

mathmari said:
For 3:
We have that the vectors of $B$ are linear independent, according to question 2, and the number of vectors equals the dimension of $V$. This imply that $B$ is a basis of $V$, right?
Since $B$ is a basis of $V$, every element of $V$ can be written as a linear combination of the elements of $B$. But why is this linear combination $\displaystyle{v=\sum_{i=1}^n(v\cdot b_i)b_i}$ ? Is this because of the definition of $b_i$, i.e. that $b_i\cdot b_i=1$ ?

Yep.
Since $B$ is a basis we can write $v=\sum \lambda_j b_j$, can't we?
Suppose we use that to calculate $v\cdot b_i$... 🤔

mathmari said:
For 4:
To show that the matrix $a$ is orthogonal, we have to show that $a^Ta=I=aa^T$ using the definition os the vectors $b_i$, i.e. that $b_i\cdot b_i=1$ and $b_i\cdot b_j=0$ fr $i\neq j$, right?

Yep.
$a^T$ has each vector $b_i$ as a row doesn't it?
And $a$ has each $b_i$ as a column.
So if we calculate $a^Ta$ we multiply indeed each $b_i$ row in $a^T$ with each $b_j$ column in $a$. 🤔
 
As for 3:
SInce $B$ is a basis of $V$ then we can write $\displaystyle{v=\sum_{i=1}^n\lambda_ib_i}$.
Then we get $$v\cdot b_j=\left (\sum_{i=1}^n\lambda_ib_i\right )\cdot b_j=\lambda_j$$
That means that the linear combination can be written as $\displaystyle{v=\sum_{i=1}^n(v\cdot b_i)b_i}$.

🤓
 
Yep. :cool:
 
Great! Thanks a lot! 🥳
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
23
Views
2K
Replies
5
Views
1K
Replies
7
Views
1K
Replies
10
Views
2K
Replies
3
Views
2K
Replies
4
Views
2K
Replies
12
Views
2K
Back
Top