Union & Intersection questions

  • Context: MHB 
  • Thread starter Thread starter bala2014
  • Start date Start date
  • Tags Tags
    Intersection Union
Click For Summary
SUMMARY

The discussion focuses on a mathematical problem involving set theory to determine the minimum number of finalists in the MISS CAT 2013 contest. Initially, 66 cats entered, with 21 eliminated, leaving 45 cats. Among these, 27 had stripes and 32 had one black ear. By applying the principle of inclusion-exclusion, the intersection of the two sets (striped cats and cats with a black ear) is calculated to be 14, establishing that at least 14 cats qualified for the finals.

PREREQUISITES
  • Understanding of set theory concepts, specifically intersections and unions.
  • Familiarity with the inclusion-exclusion principle in mathematics.
  • Basic algebra skills for solving equations.
  • Knowledge of how to represent sets and their cardinalities.
NEXT STEPS
  • Study the inclusion-exclusion principle in detail to apply it in various contexts.
  • Learn about set operations and their applications in problem-solving.
  • Practice solving similar problems involving intersections and unions of sets.
  • Explore advanced topics in combinatorics for deeper insights into counting problems.
USEFUL FOR

Mathematicians, educators, students studying set theory, and anyone interested in combinatorial problem-solving techniques.

bala2014
Messages
4
Reaction score
0
Sixty six cats signed up for the contest MISS CAT 2013. After the first round 21 cats were eliminated
because they failed to catch a mouse. Of the remaining cats, 27 had stripes and 32 had one black
ear. All striped cats with one black ear got to the final. What is the minimum number of finalists?
(A) 5 (B) 7 (C) 13 (D) 14 (E) 27
 
Physics news on Phys.org
66 cats started out, 21 were eliminated, so 45 made it to round two.

In round two, all those that had both a black ear and stripes continued.

Since there were 27 with stripes and 32 with a black ear, but only 45 cats, some had to have both. How many must have had both?
 
Prove It said:
Since there were 27 with stripes and 32 with a black ear, but only 45 cats, some had to have both. How many must have had both?
Out of 45 that passed the first round, let $B$ be the set of cats with a black ear and $S$ be the set of cats with stripes. It's easier to figure out $|B\cap S|$ (the number of elemenst in the intersection) under the assumption that all 45 cats had stripes or a black ear or both. Then the answer is unique. I'll wait for the OP to show some effort on this, and then we can figure out how an upper bound on $|B\cup S|$ turns into a lower bound on $|B\cap S|$.
 
Evgeny.Makarov said:
Out of 45 that passed the first round, let $B$ be the set of cats with a black ear and $S$ be the set of cats with stripes. It's easier to figure out $|B\cap S|$ (the number of elemenst in the intersection) under the assumption that all 45 cats had stripes or a black ear or both. Then the answer is unique. I'll wait for the OP to show some effort on this, and then we can figure out how an upper bound on $|B\cup S|$ turns into a lower bound on $|B\cap S|$.

By keeping $|B\cap S|$ = x , B = 27-x, S = 32-x, we know $|B\cup S|$ s 45. So we can form a equation 27-x+x+32-x = 45 where x= 59-45 = 14.
 
bala2014 said:
By keeping $|B\cap S|$ = x , B = 27-x, S = 32-x
Something is not right here. First, $B$ is a set (at least as I defined it) and $27-x$ is a number, so $B$ and $27-x$ are objects of different types and cannot be equal. Second, if you mean $|B|=27-x$, this is also not right. "$B$ [is] the set of cats with a black ear", and the problem statement says that $|B|=32$. What you probably mean is that $|B\setminus (B\cap S)|=|B\setminus S|=32-x$ if $|B\cap S|=x$. Similarly, $|S\setminus (B\cap S)|=|S\setminus B|=27-x$. Now, the sets $B\setminus S$, $B\cap S$ and $S\setminus B$ ar disjoint and their union has 45 element (under the additional assumption that all 45 cats had stripes or a black ear or both). From here we get your equation
\[
(27-x)+x+(32-x) = 45.
\]

I would write a solution as follows.
\[
|B|+|S|-|B\cap S|=|B\cup S|\qquad(*)
\]
from where
\[
|B\cap S|=|B|+|S|-|B\cup S|=32+27-45=14
\]
If we don't make the assumption that $|B\cup S|=45$, then we only know that $|B\cup S|\le 45$, so (*) gives
\[
|B\cap S|\ge |B|+|S|-45=32+27-45=14.
\]
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 67 ·
3
Replies
67
Views
16K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 65 ·
3
Replies
65
Views
11K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 20 ·
Replies
20
Views
5K