Union & Intersection questions

  • Context: MHB 
  • Thread starter Thread starter bala2014
  • Start date Start date
  • Tags Tags
    Intersection Union
Click For Summary

Discussion Overview

The discussion revolves around a combinatorial problem involving sets, specifically focusing on the union and intersection of two sets representing cats with specific characteristics in a contest. Participants explore the implications of the given numbers and seek to determine the minimum number of finalists based on the conditions provided.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant calculates that after the first round, 45 cats remain, leading to a question about how many cats have both stripes and a black ear.
  • Another participant proposes using set notation to define the sets of cats with stripes and black ears, suggesting that the intersection of these sets can be determined under certain assumptions.
  • A different participant points out a potential error in the previous reasoning regarding the definitions of the sets and their cardinalities, emphasizing the need for clarity in distinguishing between set elements and their counts.
  • One participant formulates an equation based on the assumption that all remaining cats have either stripes, a black ear, or both, leading to a calculation of the intersection size.
  • Another participant provides a more formal approach to the problem, presenting a solution using set theory notation and discussing the implications of not assuming that the union of the sets equals 45.

Areas of Agreement / Disagreement

Participants express differing views on the correct interpretation of set definitions and the calculations involved. There is no consensus on the approach to take or the correctness of the various interpretations presented.

Contextual Notes

The discussion includes assumptions about the total number of cats and the characteristics they possess, which may affect the conclusions drawn. The participants also note the importance of distinguishing between set elements and their counts, which remains unresolved.

bala2014
Messages
4
Reaction score
0
Sixty six cats signed up for the contest MISS CAT 2013. After the first round 21 cats were eliminated
because they failed to catch a mouse. Of the remaining cats, 27 had stripes and 32 had one black
ear. All striped cats with one black ear got to the final. What is the minimum number of finalists?
(A) 5 (B) 7 (C) 13 (D) 14 (E) 27
 
Physics news on Phys.org
66 cats started out, 21 were eliminated, so 45 made it to round two.

In round two, all those that had both a black ear and stripes continued.

Since there were 27 with stripes and 32 with a black ear, but only 45 cats, some had to have both. How many must have had both?
 
Prove It said:
Since there were 27 with stripes and 32 with a black ear, but only 45 cats, some had to have both. How many must have had both?
Out of 45 that passed the first round, let $B$ be the set of cats with a black ear and $S$ be the set of cats with stripes. It's easier to figure out $|B\cap S|$ (the number of elemenst in the intersection) under the assumption that all 45 cats had stripes or a black ear or both. Then the answer is unique. I'll wait for the OP to show some effort on this, and then we can figure out how an upper bound on $|B\cup S|$ turns into a lower bound on $|B\cap S|$.
 
Evgeny.Makarov said:
Out of 45 that passed the first round, let $B$ be the set of cats with a black ear and $S$ be the set of cats with stripes. It's easier to figure out $|B\cap S|$ (the number of elemenst in the intersection) under the assumption that all 45 cats had stripes or a black ear or both. Then the answer is unique. I'll wait for the OP to show some effort on this, and then we can figure out how an upper bound on $|B\cup S|$ turns into a lower bound on $|B\cap S|$.

By keeping $|B\cap S|$ = x , B = 27-x, S = 32-x, we know $|B\cup S|$ s 45. So we can form a equation 27-x+x+32-x = 45 where x= 59-45 = 14.
 
bala2014 said:
By keeping $|B\cap S|$ = x , B = 27-x, S = 32-x
Something is not right here. First, $B$ is a set (at least as I defined it) and $27-x$ is a number, so $B$ and $27-x$ are objects of different types and cannot be equal. Second, if you mean $|B|=27-x$, this is also not right. "$B$ [is] the set of cats with a black ear", and the problem statement says that $|B|=32$. What you probably mean is that $|B\setminus (B\cap S)|=|B\setminus S|=32-x$ if $|B\cap S|=x$. Similarly, $|S\setminus (B\cap S)|=|S\setminus B|=27-x$. Now, the sets $B\setminus S$, $B\cap S$ and $S\setminus B$ ar disjoint and their union has 45 element (under the additional assumption that all 45 cats had stripes or a black ear or both). From here we get your equation
\[
(27-x)+x+(32-x) = 45.
\]

I would write a solution as follows.
\[
|B|+|S|-|B\cap S|=|B\cup S|\qquad(*)
\]
from where
\[
|B\cap S|=|B|+|S|-|B\cup S|=32+27-45=14
\]
If we don't make the assumption that $|B\cup S|=45$, then we only know that $|B\cup S|\le 45$, so (*) gives
\[
|B\cap S|\ge |B|+|S|-45=32+27-45=14.
\]
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 67 ·
3
Replies
67
Views
16K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 65 ·
3
Replies
65
Views
11K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 20 ·
Replies
20
Views
5K