(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Let the Hamiltonian with canonical variables be [itex]H(q,p)=\frac{\alpha ^3 e^{2\alpha q }}{p^3}[/itex] where alpha is a constant.

1)Given the generating function [itex]F(q,Q)=\frac{e^{2\alpha q }}{Q}[/itex], find the expression of the new coordinates in function of the old ones: [itex]Q(q,p)[/itex] and [itex]P(q,p)[/itex].

2)Find the expression of [itex]K(Q,P)[/itex] and the corresponding Hamiltonian equations.

3)With the initial conditions [itex]Q(t=0)=Q_0[/itex] and [itex]P(t=0)=P_0[/itex], solve these equations for times [itex]t<P_0^2/2[/itex].

4)Find [itex]q(t)[/itex] and [itex]p(t)[/itex] for the initial conditions [itex]q(0)=0[/itex] and [itex]p(0)=1[/itex].

2. Relevant equations

Lots of.

3. The attempt at a solution

1)I found out [itex]Q=\frac{\alpha e^{\alpha q}}{p}[/itex] and [itex]P=\frac{p^2}{\alpha ^2 e^{\alpha q}}[/itex].

2)The Hamiltonian in function of the new variables gave me [itex]K=\frac{Q}{P}[/itex]. This simple expression makes me feel I didn't make any mistake yet.

3)Hamilton equations gave me [itex]\dot P=-\frac{1}{P}[/itex] and [itex]\dot Q = -\frac{Q}{P^2}[/itex].

Solving the first equation gave me [itex]\frac{P^2}{2}=-t+\frac{P_0^2}{2}[/itex]. But... I am adding a time with a linear momentum squared ( kg times m /s )^2. How can this be right? Even in the problem statement, they write "[itex]t<P_0^2/2[/itex]", does this even make sense?

By the way I do not know how to answer to question 3. Can someone help me?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Units problem with my Hamilton's equations

**Physics Forums | Science Articles, Homework Help, Discussion**