NOTE: this message has nothing to do with this thread. Skip it if you wish.
I am going to work out some of the basic algebra that is avoided in this helpful video:
Algebra to get to equations 3:59
OK so simplifying the last equation above we get :
$$r \sin \theta \frac{\partial}{\partial r} + \cos \theta \frac{\partial}{\partial \theta} + \frac{\cos \phi}{\sin \theta \sin \phi} \frac{\partial}{\partial r} = \frac{r}{\sin \phi} \frac{\partial}{\partial y}$$
Thus solving for ##\frac{\partial}{\partial y}## we get
$$\frac{\partial}{\partial y} = \sin \theta \sin \phi \frac{\partial}{\partial r} + \frac{\sin \phi \cos \theta}{r} \frac{\partial}{\partial \theta} + \frac{\cos \phi}{r \sin \theta} \frac{\partial}{\partial \phi} \ \ \ \ (1)$$
Plugging ##\frac{\partial}{\partial y}## result into equation ##(I)## and rewriting it we get:
$$\cos \theta \frac{\partial}{\partial z} = \frac{\partial}{\partial r} + \frac{\cos \phi}{r \sin \phi} \frac{\partial}{\partial \phi} - \frac{\sin \theta}{\sin \phi}\Big( \sin \theta \sin \phi \frac{\partial}{\partial r} + \frac{\sin \phi \cos \theta}{r} \frac{\partial}{\partial \theta} + \frac{\cos \phi}{r \sin \theta} \frac{\partial}{\partial \phi} \Big)$$
$$\cos \theta \frac{\partial}{\partial z} = \cos^2 \theta \frac{\partial}{\partial r} - \frac{\sin \theta \cos \theta}{r} \frac{\partial}{\partial \theta}$$
Solving for ##\frac{\partial}{\partial z}## we get
$$\frac{\partial}{\partial z} = \cos \theta \frac{\partial}{\partial r} - \frac{\sin \theta}{r} \frac{\partial}{\partial \theta} \ \ \ \ (2)$$
By solving for ##\frac{\partial}{\partial x}## in equation ##(III)## we got:
$$\frac{\partial}{\partial x} = \frac{1}{r \sin \phi \sin \theta} \Big( r \sin \theta \cos \phi \frac{\partial}{\partial y} - \frac{\partial}{\partial \phi} \Big)$$
We already know ##\frac{\partial}{\partial y}## so we just have to plug it into and get
$$\frac{\partial}{\partial x} = \sin \theta \cos \phi \frac{\partial}{\partial r} + \frac{\cos \theta \cos \phi}{r} \frac{\partial}{\partial \theta} - \frac{\sin \phi}{r \sin \theta}\frac{\partial}{\partial \phi} \ \ \ \ (3)$$
NOTE: Andrew got the wrong sign in the third term of equation (3)'s RHS.
Some algebra to get to the final result (see 11:21)
Now it just a matter of adding terms up; you can split this task in three and then add the result of these three parts up. I will do
just one as an example.
The terms having ##\frac{\partial}{\partial r}##
as a common factor are:
##\sin^2 \theta \cos^2 \phi \hat r \frac{\partial}{\partial r} + \cos \theta \cos^2 \phi \sin \theta \hat \theta \frac{\partial}{\partial r} - \sin \phi \sin \theta \cos \phi \hat \phi \frac{\partial}{\partial \phi} + \sin^2 \phi \cos \theta \sin \theta \hat \theta \frac{\partial}{\partial r} + \sin^2 \phi \sin^2 \theta \hat r \frac{\partial}{\partial r} + \sin \phi \sin \theta \cos \phi \hat \phi \frac{\partial}{\partial r} + \cos^2 \theta \hat r \frac{\partial}{\partial r} - \sin \theta \cos \theta \hat \theta \frac{\partial}{\partial r}##
Note how ##\hat \phi## terms add up to zero. The same happens to ##\hat \theta## terms.
By adding ##\hat r## terms up we get
$$\sin^2 \theta \cos^2 \phi \hat r \frac{\partial}{\partial r} + \sin^2 \phi \sin^2 \theta \hat r \frac{\partial}{\partial r} + \cos^2 \theta \hat r \frac{\partial}{\partial r} = \hat r \frac{\partial}{\partial r}$$
By applying the same idea to ##\frac{\partial}{\partial \theta}## and ##\frac{\partial}{\partial \phi}## and adding those results to what I explicitly showed above we get
$$\vec \nabla = \hat r \frac{\partial}{\partial r} + \frac{1}{r} \hat \theta \frac{\partial}{\partial \theta} + \frac{1}{r \sin \theta} \hat \phi \frac{\partial}{\partial \phi}$$