chisigma said:
Posted the 11 24 2013 on
Math Help Forum - Free Math Help Forums by the user Haven and not yet solved...
... find the general solution of...$\displaystyle y^{\ ''} + x^{2}\ y = 0,\ 0 < x < \infty$
I have no idea what to do and any CAS I plug this in returns Bessel Functions. Is there a more elementary solution?...
The ODE...
$\displaystyle y^{\ ''} + x^{2}\ y = 0\ (1)$
... is linear with non constant coefficients and the general solution is written on the form...
$\displaystyle y(x) = c_{1}\ u(x) + c_{2}\ v(x)\ (2)$
... where u(*) and v(*) are two independent solution of (1), $c_{1}$ and $c_{2}$ two arbitrary constants. Observing (1) we realize that a solution can be either an even or an odd function , so that it is convenient to choose u(*) as even function and v(*) as odd function. Now we search u(*) and v(*) in the form...
$\displaystyle u(x) = \sum_{n=0}^{\infty} a_{n}\ x^{n}$
$\displaystyle v(x) = \sum_{n=0}^{\infty} b_{n}\ x^{n}\ (3)$
... and we do that writing sequencially the derivatives of the y for n>1...
$\displaystyle y^{(2)} = - x^{2}\ y$
$\displaystyle y^{(3)} = - x^{2}\ y^{(1)} -2\ x\ y$
$\displaystyle y^{(4)} = - x^{2}\ y^{(2)} - 4\ x\ y^{(1)} - 2\ y$
$\displaystyle y^{(5)} = - x^{2}\ y^{(3)} - 6\ x\ y^{(2)} - 6\ y^{(1)}$
$\displaystyle y^{(6)} = - x^{2}\ y^{(4)} - 8\ x\ y^{(3)} - 12\ y^{(2)}$
$\displaystyle y^{(7)} = - x^{2}\ y^{(5)} - 10\ x\ y^{(3)} - 20\ y^{(3)}$
$\displaystyle y^{(8)} = - x^{2}\ y^{(6)} - 12\ x\ y^{(4)} - 30\ y^{(4)}$
$\displaystyle y^{(9)} = - x^{2}\ y^{(7)} - 14\ x\ y^{(5)} - 42\ y^{(5)}\ (4)$
...
Observing (4) we realize that in x=0 is...
$\displaystyle y^{(n)} (0) = h_{n}\ y^{(n - 4)} (0)\ (5)$
... where $\displaystyle h_{n} = - (n-3)\ (n-2),\ n \ge 4$. The (4) combined with the Taylor theorem allows us finally to find u(x) as solution of (1) with the conditions $y(0)=1,y^{\ '} (0) = 0$ ...
$\displaystyle u(x) = 1 + \sum_{n=1}^{\infty} (-1)^{n} \frac{(4\ n - 3)\ (4\ n - 2)}{(4 n)!}\ x^{4 n} = 1 - \frac{1}{12}\ x^{4} + \frac{1}{1344}\ x^{8} - ...\ (6)$
... and v(x) as solution of (1) with the conditions $y(0)=0,y^{\ '} (0) = 1$ ...
$\displaystyle v(x) = x + \sum_{n=1}^{\infty} (-1)^{n} \frac{(4\ n - 2)\ (4\ n -1)}{(4\ n + 1)!}\ x^{4 n + 1} = x - \frac{1} {20}\ x^{5} + \frac {1}{8640}\ x^{9} - ...\ (7)$
Kind regards
$\chi$ $\sigma$