MHB Unsolved Challenge: Natural logarithm and Exponent

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $e^{-x}\le \ln(e^x-x-\ln x)$ for $x>0$.
 
Mathematics news on Phys.org
Partial answer

Let $ x = x_0\approx 0.5671432$ be the point at which $e^{-x} = x$ (in terms of the Lambert function, $x_0 = W_0(1)$). Then $\ln x_0 = -x_0$, and so $\ln(e^{x_0} - x_0 - \ln x_0) = \ln(e^{x_0}) = x_0 = e^{-x_0}$. Thus at the point $x_0$ the two functions $e^{-x}$ and $\ln(e^x - x - \ln x)$ are equal.

Now let $f(x) = \ln(e^x - x - \ln x)$. Then $$f'(x) = \frac{e^x - 1 - \frac1x}{e^x - x - \ln x} = \frac{-1 + \bigl(e^x - \frac1x\bigr)}{e^x - (x+\ln x)}.$$ When $x = x_0$, both of the expressions in parentheses in that last fraction vanish. Therefore $f'(x_0) = \dfrac{-1}{e^{x_0}} = -e^{-x_0}$, which is the same as the derivative of $e^{-x}$ at $x_0$.

When $x>x_0$, $e^x - \frac1x$ and $x + \ln x$ are both positive. So in the expression for $f'(x)$ the numerator is greater than $-1$ and the denominator is less than $e^x$, and so $f'(x) > -e^{-x}$. Conversely, when $x<x_0$, $e^x - \frac1x$ and $x + \ln x$ are both negative and so $f'(x) < -e^{-x}$. It follows that $x_0$ is a local minimum for the function $f(x) - e^{-x}$. Therefore $\ln(e^x - x - \ln x) \geqslant e^{-x}$ in the neighbourhood of $x_0$.

Once you get away from the neighbourhood of $x_0$ it ought to be relatively easy to see that $\ln(e^x - x - \ln x)$ is greater than $e^{-x}$, but I don't have the patience or energy to pursue that part of the problem.
 
Last edited:
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 10 ·
Replies
10
Views
1K
Replies
3
Views
451
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 44 ·
2
Replies
44
Views
5K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K