MHB Unsolved Challenge: Natural logarithm and Exponent

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $e^{-x}\le \ln(e^x-x-\ln x)$ for $x>0$.
 
Mathematics news on Phys.org
Partial answer

Let $ x = x_0\approx 0.5671432$ be the point at which $e^{-x} = x$ (in terms of the Lambert function, $x_0 = W_0(1)$). Then $\ln x_0 = -x_0$, and so $\ln(e^{x_0} - x_0 - \ln x_0) = \ln(e^{x_0}) = x_0 = e^{-x_0}$. Thus at the point $x_0$ the two functions $e^{-x}$ and $\ln(e^x - x - \ln x)$ are equal.

Now let $f(x) = \ln(e^x - x - \ln x)$. Then $$f'(x) = \frac{e^x - 1 - \frac1x}{e^x - x - \ln x} = \frac{-1 + \bigl(e^x - \frac1x\bigr)}{e^x - (x+\ln x)}.$$ When $x = x_0$, both of the expressions in parentheses in that last fraction vanish. Therefore $f'(x_0) = \dfrac{-1}{e^{x_0}} = -e^{-x_0}$, which is the same as the derivative of $e^{-x}$ at $x_0$.

When $x>x_0$, $e^x - \frac1x$ and $x + \ln x$ are both positive. So in the expression for $f'(x)$ the numerator is greater than $-1$ and the denominator is less than $e^x$, and so $f'(x) > -e^{-x}$. Conversely, when $x<x_0$, $e^x - \frac1x$ and $x + \ln x$ are both negative and so $f'(x) < -e^{-x}$. It follows that $x_0$ is a local minimum for the function $f(x) - e^{-x}$. Therefore $\ln(e^x - x - \ln x) \geqslant e^{-x}$ in the neighbourhood of $x_0$.

Once you get away from the neighbourhood of $x_0$ it ought to be relatively easy to see that $\ln(e^x - x - \ln x)$ is greater than $e^{-x}$, but I don't have the patience or energy to pursue that part of the problem.
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top