Upper bound for first excited state - variational principle

Click For Summary
SUMMARY

The discussion centers on solving problem number 5 from MIT's Quantum Physics II course, specifically focusing on the variational principle for the first excited state. The user derived the upper bound for the first excited state energy as \( h_{1} = 2.423 \) using a trial wavefunction \( \psi_{1} = Axe^{-\frac{ax^2}{2}} \). However, the actual energy obtained through the shooting method is \( e_{1} = 4.696 \), indicating that the upper bound is less than the actual energy. The user successfully verified the ground state energy, confirming that the exact value is below the calculated upper bound.

PREREQUISITES
  • Understanding of the variational principle in quantum mechanics
  • Familiarity with wavefunctions and their properties
  • Proficiency in using Scilab for numerical solutions
  • Knowledge of the shooting method for solving differential equations
NEXT STEPS
  • Explore the variational principle in greater detail, focusing on its applications in quantum mechanics
  • Learn about different trial wavefunctions and their impact on energy calculations
  • Investigate the shooting method for solving second-order differential equations
  • Study the properties of excited states in quantum systems
USEFUL FOR

Students and researchers in quantum mechanics, particularly those interested in variational methods, numerical solutions, and energy state calculations.

lua
Messages
9
Reaction score
4
Homework Statement
Find the upper bound of the first excited energy eigenstate in the quartic potential using variational principle.
Relevant Equations
Time-independent Schrodinger equation:
$$
-\frac{\hbar}{2m}\frac{\partial^2 \psi}{\partial x^2}+\alpha x^{4} \psi=E \psi
$$
Dimensionless time-independent Schrodinger equation
$$
-\frac{1}{2}\frac{\partial^2 \psi}{\partial u^2}+(u^{4} - e) \psi=0
$$
Variational principle:
$$
E_{1}\leqslant \int_{-\infty }^{\infty }\psi^{*}(x)H\psi(x)dx
$$
I'm solving problem number 5 from https://ocw.mit.edu/courses/8-05-quantum-physics-ii-fall-2013/resources/mit8_05f13_ps2/.

(a) Here I got:
$$
\beta = \frac{\hbar^{\frac{1}{3}}}{(\alpha m)^\frac{1}{6}}
$$
and:
$$
E = \left ( \frac{\alpha \hbar^4}{m^2} \right )^\frac{1}{3}e
$$
(b) Using Scilab I found that for the ground state energy:
$$
e_{0}=0.667986
$$
(c) A candidate wavefunction for the variational principle is:
$$
\psi _{1}=Axe^{-\frac{ax^2}{2}}
$$
(It is chosen to be orthogonal to ##\psi _{0}##.)
Here I got that upper bound for the first excited state is:
$$
h_{1}=\frac{3}{4}\left ( 10^{\frac{1}{3}} + \frac{5}{100^{\frac{1}{3}}} \right )=2.423
$$
(d) But here, by using shooting method, I got that:
$$
e_{1}=4.696
$$
or, the upper bound is less than the actual energy of the first excited state.
I'm not sure what went wrong.

I have to mention that I checked this for the ground state energy. By using the trial wave function:
$$
\psi _{0}=Be^{-\frac{ax^2}{2}}
$$
I got the upper bound for the ground state energy:
$$
h_{0}=\frac{1}{4}\left ( 6^{\frac{1}{3}} + \frac{3}{36^{\frac{1}{3}}} \right )=0.68142
$$
and exact ground state energy obtained by using the shooting method is:
$$
e_{1}=0.667986
$$
which is OK: exact value of the ground state energy is little bellow the upper bound.
The Scilab source follows:
```
//Solve a second order differential equation
//Y’’= 2(x^4-e)y, y(0)=1 and y’(0)=0
//e0=0.6679863 - dimensionless gruound state energy
funcprot(0)

function dy=f(x, y)
dy(1)=y(2);
dy(2)=2*(x^4-0.6679863)*y(1);
endfunction

x0=0;
xmax=10;
x=x0:0.1:xmax;
y0=1;
dy0=0;

y=ode([y0;dy0],x0,x,f);

clf;

plot(x,y(1,:),"r")
plot(x,y(2,:),"g")

xtitle("$\frac{d^2 y}{dx^2} =2*(x^4-0.6679863)*y $","x","f(x,y)");

legend("x","dy/dx")
 
Last edited:
Physics news on Phys.org
What is ##\psi(0)## for the first excited state?
Does ##\psi'(0) = 0## for the first excited state?
 
Last edited:
  • Like
Likes   Reactions: lua
Oh!
I did't think of that at all. Thank you!
 
  • Like
Likes   Reactions: TSny

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
16
Views
3K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K