Upper bound for first excited state - variational principle

lua
Messages
9
Reaction score
4
Homework Statement
Find the upper bound of the first excited energy eigenstate in the quartic potential using variational principle.
Relevant Equations
Time-independent Schrodinger equation:
$$
-\frac{\hbar}{2m}\frac{\partial^2 \psi}{\partial x^2}+\alpha x^{4} \psi=E \psi
$$
Dimensionless time-independent Schrodinger equation
$$
-\frac{1}{2}\frac{\partial^2 \psi}{\partial u^2}+(u^{4} - e) \psi=0
$$
Variational principle:
$$
E_{1}\leqslant \int_{-\infty }^{\infty }\psi^{*}(x)H\psi(x)dx
$$
I'm solving problem number 5 from https://ocw.mit.edu/courses/8-05-quantum-physics-ii-fall-2013/resources/mit8_05f13_ps2/.

(a) Here I got:
$$
\beta = \frac{\hbar^{\frac{1}{3}}}{(\alpha m)^\frac{1}{6}}
$$
and:
$$
E = \left ( \frac{\alpha \hbar^4}{m^2} \right )^\frac{1}{3}e
$$
(b) Using Scilab I found that for the ground state energy:
$$
e_{0}=0.667986
$$
(c) A candidate wavefunction for the variational principle is:
$$
\psi _{1}=Axe^{-\frac{ax^2}{2}}
$$
(It is chosen to be orthogonal to ##\psi _{0}##.)
Here I got that upper bound for the first excited state is:
$$
h_{1}=\frac{3}{4}\left ( 10^{\frac{1}{3}} + \frac{5}{100^{\frac{1}{3}}} \right )=2.423
$$
(d) But here, by using shooting method, I got that:
$$
e_{1}=4.696
$$
or, the upper bound is less than the actual energy of the first excited state.
I'm not sure what went wrong.

I have to mention that I checked this for the ground state energy. By using the trial wave function:
$$
\psi _{0}=Be^{-\frac{ax^2}{2}}
$$
I got the upper bound for the ground state energy:
$$
h_{0}=\frac{1}{4}\left ( 6^{\frac{1}{3}} + \frac{3}{36^{\frac{1}{3}}} \right )=0.68142
$$
and exact ground state energy obtained by using the shooting method is:
$$
e_{1}=0.667986
$$
which is OK: exact value of the ground state energy is little bellow the upper bound.
The Scilab source follows:
```
//Solve a second order differential equation
//Y’’= 2(x^4-e)y, y(0)=1 and y’(0)=0
//e0=0.6679863 - dimensionless gruound state energy
funcprot(0)

function dy=f(x, y)
dy(1)=y(2);
dy(2)=2*(x^4-0.6679863)*y(1);
endfunction

x0=0;
xmax=10;
x=x0:0.1:xmax;
y0=1;
dy0=0;

y=ode([y0;dy0],x0,x,f);

clf;

plot(x,y(1,:),"r")
plot(x,y(2,:),"g")

xtitle("$\frac{d^2 y}{dx^2} =2*(x^4-0.6679863)*y $","x","f(x,y)");

legend("x","dy/dx")
 
Last edited:
Physics news on Phys.org
What is ##\psi(0)## for the first excited state?
Does ##\psi'(0) = 0## for the first excited state?
 
Last edited:
Oh!
I did't think of that at all. Thank you!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top