A Upper indices and lower indices in Einstein notation

AI Thread Summary
The discussion centers on the confusion surrounding the use of upper and lower indices in the context of the cross product and Einstein notation. It explains that the different index positions for vectors a and b in the cross product arise from the relationship between vector spaces and their duals. In Euclidean space, vectors and dual vectors can be directly associated, but this changes in curved spacetime, necessitating a distinction between coordinate and dual bases. The notation reflects the transformation laws for components and basis vectors, with upper indices representing contravariant components and lower indices representing covariant components. A deeper understanding of these concepts is essential for clarity in applying Einstein notation.
GGGGc
I have read some text about defining the cross product. It can be defined by both a x b = epsilon_(ijk) a^j b^k e-hat^i and a x b = epsilon^(ijk) a_i b_j e-hat^k
why the a and b have opposite indice positions with the epsilon? How to understand that physically?
 
Physics news on Phys.org
Screen Shot 2023-10-02 at 21.18.13.png

This is the text i read
 
PeroK said:
I've already checked that, but I'm still confused about when to use upper or lower indices, do you have some examples? Thanks for answering my question!
 
GGGGc said:
I've already checked that, but I'm still confused about when to use upper or lower indices, do you have some examples? Thanks for answering my question!
You really need a textbook or lecture notes, as there is a lot to say on this. The basic idea comes from the notaion of a dual vector space. In Euclidean space, the dual space can be associated directly with the original space, so there is no need for a distinction. And, generally a vector is written as a sum of its components in any coordinate basis:
$$\mathbf a = \sum_{i = 1}^n a_i\mathbf e_i$$Where ##\mathbf e_i## are the basis vectors. When we come to curved spacetime, the dual space can no longer be directly associated with the original space. Therefore, we have a coordinate basis and a dual basis and a vector is expressed in terms of the basis and a dual vector in terms of the dual basis. (Note that this concept extends to tensors of any rank.) The Einstien notation not only dropped the summation symbol, but used upper indices to represent components of a vector and lower indices to represent the basis vectors. This is because the components obey the contravariant transformation law and the basis vectors obey the covariant transformation law (you better check I've got that the right way round!). So, we write:
$$\mathbf a = a^{\alpha}\mathbf e_{\alpha}$$Conversely, the components of a dual vector (also known as a one-form) obey the covariant transformation law and the basis dual vectors obey the contravariant law. So, for a dual vector, we write:$$\mathbf w = w_{\alpha}\mathbf \theta^{\alpha}$$Where ##\mathbf \theta^{\alpha}## are the basis dual vectors.

That should get you started, but whatever you are studying should go into the Einstein notation in sufficient depth.
 
  • Informative
  • Like
Likes GGGGc and berkeman
Thank you so much for your explanation! I'm quite clear now!
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top