MHB Using Angles on the Same Arc Theorem

markosheehan
Messages
133
Reaction score
0
View attachment 6471im trying to use angles on the same arc theorem
 

Attachments

  • WIN_20170313_12_36_15_Pro.jpg
    WIN_20170313_12_36_15_Pro.jpg
    59.8 KB · Views: 106
Mathematics news on Phys.org
markosheehan said:
im trying to use angles on the same arc theorem
Yes, the same arc theorem will certainly come into it. I suggest that you draw the lines $AL$ and $BC$ in the diagram, and then look for an external angle of the triangle $BCD$.
 
sadly i still can't see it... I've drawn these lines. all i can see now is angleCAL and angleCBL
 
markosheehan said:
sadly i still can't see it... I've drawn these lines. all i can see now is angleCAL and angleCBL
That's right! Angle $CBL$ is an external angle of the triangle $BCD$, so it is the sum of the two opposite angles.
 
see it now
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top