Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Using Limit Definition of the Derivative?

  1. Sep 27, 2012 #1
    If one uses the limit definition of a derivative (lim of (f(x)-f(a)) / (x-a)) as x approaches a) on a function and you get a value (ie. it is not undefined) does that mean the derivative of the function at that point exists? In other words, even if the limit definition of the derivative works, do you still need to determine whether the function is continuous, smooth and non-vertical at x=a in order to know that the function is differentiable at x=a?

    For example,

    The derivative of f(x)=(x^2)(sinx) at x=0 is 0 (using limit definition). Is that all the proof needed to show that the function is differentiable at x=0?
  2. jcsd
  3. Sep 27, 2012 #2


    User Avatar
    Science Advisor
    Gold Member
    2017 Award

    A function is differentiable at a point if the limit of the Newton quotients exist at that point.
    try to convince yourself that the function is automatically continuous at the point
  4. Sep 27, 2012 #3

    Simon Bridge

    User Avatar
    Science Advisor
    Homework Helper

    You'd normally just say $$f^\prime(a)=\lim_{(x-a)\rightarrow 0}\frac{f(a+(x-a))-f(a)}{x-a}$$... follows from the definition of a derivative. If the limit exists then the function is differentiable at point a by definition. (I wrote it like that to draw a link with the general definition of the derivative.))

    Well, in each of those cases, the limit won't converge will it? Well... the above is basically a one-sided limit: see below.

    In this case, yep.
    However, it gets conceptually hairy when we include things like the Cantor function.

    Is the Cantor function "continuous"? Is it differentiable?
    Last edited: Sep 27, 2012
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook