Using operators and finding expectation value

  • #1
16
0

Homework Statement



The expectation value of the time derivative of an arbitrary quantum operator [itex]\hat{O}[/itex] is given by the expression:

d[itex]\langle[/itex][itex]\hat{O}[/itex][itex]\rangle[/itex]/dt[itex]\equiv[/itex][itex]\langle[/itex]d[itex]\hat{O}[/itex]/dt[itex]\rangle[/itex]=[itex]\langle[/itex]∂[itex]\hat{O}[/itex]/∂t[itex]\rangle[/itex]+i/hbar[itex]\langle[/itex][itex][[/itex][itex]\hat{H}[/itex],[itex]\hat{O}[/itex][itex]][/itex][itex]\rangle[/itex]​

Obtain an expression for [itex]\langle[/itex]d[itex]\hat{L}[/itex]x/dt+d[itex]\hat{L}[/itex]y/dt[itex]\rangle[/itex] where [itex]\hat{H}[/itex]=[itex]\hat{H}[/itex]00Bz[itex]\hat{L}[/itex]z/hbar


Homework Equations



[itex][[/itex][itex]\hat{L}[/itex]x,[itex]\hat{L}[/itex]y[itex]][/itex]=i*hbar[itex]\hat{L}[/itex]z
[itex][[/itex][itex]\hat{L}[/itex]y,[itex]\hat{L}[/itex]z[itex]][/itex]=i*hbar[itex]\hat{L}[/itex]x
[itex][[/itex][itex]\hat{L}[/itex]z,[itex]\hat{L}[/itex]x[itex]][/itex]=i*hbar[itex]\hat{L}[/itex]y

[itex][[/itex]A,B[itex]][/itex]=AB-BA


The Attempt at a Solution



[itex]\langle[/itex]d[itex]\hat{L}[/itex]x/dt+d[itex]\hat{L}[/itex]y/dt[itex]\rangle[/itex]=d[itex]\langle[/itex][itex]\hat{L}[/itex]x+[itex]\hat{L}[/itex]y[itex]\rangle[/itex]
=[itex]\frac{1}{ih}[/itex] d[itex]\langle[/itex][itex][[/itex][itex]\hat{L}[/itex]y,[itex]\hat{L}[/itex]z[itex]][/itex]+[itex][[/itex][itex]\hat{L}[/itex]z,[itex]\hat{L}[/itex]x[itex]][/itex][itex]\rangle[/itex]/dt
=[itex]\frac{1}{ih}[/itex][itex]\langle[/itex] ∂[itex][[/itex][itex]\hat{L}[/itex]y,[itex]\hat{L}[/itex]z[itex]][/itex]+[itex][[/itex][itex]\hat{L}[/itex]z,[itex]\hat{L}[/itex]x[itex]][/itex]/∂t[itex]\rangle[/itex]+[itex]\frac{i}{hbar}[/itex][itex]\langle[/itex][itex][[/itex][itex]\hat{H}[/itex],[itex][[/itex][itex]\hat{L}[/itex]y,[itex]\hat{L}[/itex]z[itex]][/itex]+[itex][[/itex][itex]\hat{L}[/itex]z,[itex]\hat{L}[/itex]x[itex]][/itex][itex]][/itex][itex]\rangle[/itex]

I'm not sure how to continue on from this
 

Answers and Replies

  • #2
Just calculate the commutators [itex] [L_x, H] [/itex] and [itex] [L_y, H] [/itex]? You know that H0 should commute with all L's (why?), and the commutator with the extra term is easy to calculate.
 
  • #3
Just calculate the commutators [itex] [L_x, H] [/itex] and [itex] [L_y, H] [/itex]? You know that H0 should commute with all L's (why?), and the commutator with the extra term is easy to calculate.

I calculated the commutators [itex] [L_x, H] [/itex] and [itex] [L_y, H] [/itex] but I don't see how this helps me answer the question. I also can't figured out why H0 should commute with all L's.

Also [itex]\hat{H}[/itex]0=-hbar2/2mr2 [itex]\{[/itex][itex]\frac{∂}{∂r}[/itex](r2[itex]\frac{∂}{∂r}[/itex])+[itex]\frac{1}{sinθ}[/itex][itex]\frac{∂}{∂θ}[/itex](sinθ[itex]\frac{∂}{∂θ}[/itex])+[itex]\frac{1}{sin squared θ}[/itex][itex]\frac{∂ squared}{∂\phi squared}[/itex][itex]\}[/itex]+V(r)

where the angular-dependent part of the Hamiltonian corresponds to the total angular momentum operator [itex]\hat{L}[/itex]2
 
Last edited:
  • #4
I calculated the commutators [itex] [L_x, H] [/itex] and [itex] [L_y, H] [/itex] but I don't see how this helps me answer the question.
You were given that
$$\bigg\langle \frac{d\hat{O}}{dt} \bigg\rangle = \bigg\langle \frac{\partial \hat{O}}{\partial t} \bigg\rangle + \frac{i}{\hbar} \langle [\hat{H},\hat{O}] \rangle.$$ What do you get if you let ##\hat{O} = \hat{L}_x##?

I also can't figured out why H0 should commute with all L's.

Also
$$\hat{H}_0 = -\frac{\hbar^2}{2mr^2}\left[
\frac{\partial}{\partial r}\left(r^2 \frac{\partial}{\partial r}\right) +
\frac{1}{\sin\theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial}{\partial \theta}
\right) +
\frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial\phi^2}\right]+V(r)$$ where the angular-dependent part of the Hamiltonian corresponds to the total angular momentum operator [itex]\hat{L}^2[/itex]
You should be able to prove that ##\hat{L}_i## commutes with ##\hat{L}^2## using the property [AB,C]=A[B,C]+[A,C]B and the commutation relations you listed above.
 
  • #5
You were given that
$$\bigg\langle \frac{d\hat{O}}{dt} \bigg\rangle = \bigg\langle \frac{\partial \hat{O}}{\partial t} \bigg\rangle + \frac{i}{\hbar} \langle [\hat{H},\hat{O}] \rangle.$$ What do you get if you let ##\hat{O} = \hat{L}_x##?

But shouldn't I substitute [itex]\hat{O}[/itex]=[itex]\hat{L}[/itex]x+[itex]\hat{L}[/itex]y instead?

You should be able to prove that ##\hat{L}_i## commutes with ##\hat{L}^2## using the property [AB,C]=A[B,C]+[A,C]B and the commutation relations you listed above.

Oh I understand now. Thanks
 
  • #6
You asked why you want to calculate ##[\hat{H},\hat{L}_i]##. Do you see why?
 
  • #7
Yh I do. My final answer is

[itex]\langle[/itex]d[itex]\hat{L}[/itex]x/dt+d[itex]\hat{L}[/itex]y/dt[itex]\rangle[/itex]=[itex]\langle[/itex]∂([itex]\hat{L}[/itex]x+[itex]\hat{L}[/itex]y)/∂t[itex]\rangle[/itex]+[itex]\frac{i}{hbar}[/itex][itex]\langle[/itex]iμ0Bz([itex]\hat{L}[/itex]y - [itex]\hat{L}[/itex]x)[itex]\rangle[/itex]

Could I further simplify this?
 

Suggested for: Using operators and finding expectation value

Back
Top