MHB Using Rolle's theorem to prove for roots (part 2)

  • Thread starter Thread starter Joe20
  • Start date Start date
  • Tags Tags
    Roots Theorem
Click For Summary
The discussion focuses on proving that the cubic equation ax^3 + bx + c = 0 has at most three real roots when ab < 0. The proof begins by defining the function f(x) and assuming it has four distinct roots, leading to the conclusion that there must be points where the derivative f'(x) equals zero. Given the conditions of ab < 0, the analysis shows that f'(x) can only have two roots, contradicting the assumption of four distinct roots. The final assertion is that the equation can have at most three real roots, aligning with the properties of cubic polynomials. The author seeks feedback on the clarity and correctness of the proof.
Joe20
Messages
53
Reaction score
1
Hi, I have done up the proof for the question below. Please correct me if I have done wrong for the proof. Thanks in advanced!Question: Prove that if ab < 0 then the equation ax^3 + bx + c = 0 has at most three real roots.Proof:

Let f(x) = ax^3 + bx + c.

Assume that f(x) has 4 distinct roots, f(p) = f(q) = f(r) = f(s) = 0, there is a point x1 \in (p,q) such that f'(x1) = 0 ; x2 \in (q, r) such that f'(x2) = 0 ; x3 \in (r,s) such that f'(x3) = 0.

Since ab < 0 then there are two possibilities where a>0 and b<0 or a <0 , b > 0.

f'(x) = 3ax^2+b

If the absolute value of 3ax^2 = the absolute value of b where 3ax^2 > 0 and b < 0, then f'(x) = 0

If the absolute value of 3ax^2 = the absolute value of b where 3ax^2 < 0 and b > 0, then f'(x) = 0

This is not true because the equation f'(x) = 0 has only two roots.

Hence the given equation has at most three real roots when ab < 0.
 
Physics news on Phys.org
But all cubic polynomial equations have at most three real roots! (Nerd)
 
Olinguito said:
But all cubic polynomial equations have at most three real roots! (Nerd)


Here is the revised proof:

Proof:

Let f(x) = ax^3 + bx + c.

Assume that f(x) has 3 distinct roots, f(p) = f(q) = f(r) = 0, there is a point x1 element of (p,q) such that f'(x1) = 0 ; x2 element of (q, r) such that f'(x2) = 0.

Since ab < 0 then there are two possibilities where a>0 and b<0 or a <0 , b > 0.

f'(x) = 3ax^2+b

If the absolute value of 3ax^2 = the absolute value of b where 3ax^2 > 0 and b < 0, then f'(x) = 0

If the absolute value of 3ax^2 = the absolute value of b where 3ax^2 < 0 and b > 0, then f'(x) = 0

f'(x) = 0 has two roots.

Hence the given equation has at most three real roots when ab < 0.

Will this be ok? Or need further improvement? If so, how can it be improved?
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
917
  • · Replies 2 ·
Replies
2
Views
2K