Using Rolle's theorem to prove for roots

  • Context: MHB 
  • Thread starter Thread starter Joe20
  • Start date Start date
  • Tags Tags
    Roots Theorem
Click For Summary
SUMMARY

The discussion centers on using Rolle's Theorem to prove that the cubic equation ax3 + bx + c = 0 has exactly one real root when ab > 0. The proof establishes that if the polynomial had two distinct roots, the derivative f'(x) = 3ax2 + b would equal zero at some point between the roots, leading to a contradiction. Since the derivative is either always positive or always negative based on the signs of a and b, the polynomial cannot have more than one real root. Thus, it is concluded that the cubic polynomial has exactly one real root.

PREREQUISITES
  • Understanding of Rolle's Theorem
  • Knowledge of polynomial functions and their properties
  • Familiarity with derivatives and their implications
  • Basic concepts of real analysis
NEXT STEPS
  • Study the implications of Rolle's Theorem in different contexts
  • Explore the properties of cubic polynomials
  • Learn about the Fundamental Theorem of Algebra
  • Investigate other methods for proving the uniqueness of roots in polynomials
USEFUL FOR

Mathematicians, students studying calculus and real analysis, and anyone interested in the properties of polynomial equations and their roots.

Joe20
Messages
53
Reaction score
1
I have deduce a proof as stated below and am not sure if it is correct, therefore need some advice.

Question:
Prove that if ab > 0 then the equation ax^3 + bx + c = 0 has exactly one root by rolle's theoremProof:
Let f(x) = ax^3+bx+c = 0. f(x) is continuous and differentiable since it is a polynomial.

Assume f(x) has 2 roots, f(a) = 0 and f(b) = 0, there is a point d element of (a,b) such that f'(d) = 0.

f'(x) = 3ax^2+b
Since ab>0, a and b must be both positive or both negative.
f'(d) = 3a(d)^2+b = 3ad^2+b not equal to 0 instead >0 since any values of d for d^2 will be positive.

Likewise f'(d) = 3a(d)^2 + b will not equal to 0 instead <0 for all negative values of a and b.

Hence, a contradiction, f has exactly one root.
 
Physics news on Phys.org
Re: Using rolle's theorem to prove for roots

Your proof is essentially correct (although in one line you used $a$ and $b$ as roots of the polynomial whereas they’re already used as coefficients of the polynomial).

Since $ab>0$, $a$ and $b$ are either both positive or both negative; therefore $f'(x)=3ax^2+b$ is either always positive or always negative, i.e. it is never zero. If $f(x)$ had two distinct real roots, Rolle’s theorem would imply there was a point between the roots at which the derivative was zero – a contradiction. Hence the polynomial cannot have more than one real root.

Finally, note that the polynomial is cubic; therefore it must have at least one real root. Conclusion: it has exactly one real root.
 
Re: Using rolle's theorem to prove for roots

Olinguito said:
Your proof is essentially correct (although in one line you used $a$ and $b$ as roots of the polynomial whereas they’re already used as coefficients of the polynomial).

Since $ab>0$, $a$ and $b$ are either both positive or both negative; therefore $f'(x)=3ax^2+b$ is either always positive or always negative, i.e. it is never zero. If $f(x)$ had two distinct real roots, Rolle’s theorem would imply there was a point between the roots at which the derivative was zero – a contradiction. Hence the polynomial cannot have more than one real root.

Finally, note that the polynomial is cubic; therefore it must have at least one real root. Conclusion: it has exactly one real root.
Thanks, will change the usage of a and b accordingly.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 8 ·
Replies
8
Views
3K