MHB Using Rolle's theorem to prove for roots

  • Thread starter Thread starter Joe20
  • Start date Start date
  • Tags Tags
    Roots Theorem
Click For Summary
The proof demonstrates that if ab > 0, the cubic equation ax^3 + bx + c = 0 has exactly one root. By applying Rolle's theorem, it is shown that if the function f(x) had two roots, the derivative f'(x) would need to equal zero at some point between them, leading to a contradiction. Since f'(x) is either always positive or always negative, it cannot equal zero, indicating that there can only be one real root. Additionally, being a cubic polynomial guarantees at least one real root exists. Therefore, the conclusion is that the equation has exactly one real root.
Joe20
Messages
53
Reaction score
1
I have deduce a proof as stated below and am not sure if it is correct, therefore need some advice.

Question:
Prove that if ab > 0 then the equation ax^3 + bx + c = 0 has exactly one root by rolle's theoremProof:
Let f(x) = ax^3+bx+c = 0. f(x) is continuous and differentiable since it is a polynomial.

Assume f(x) has 2 roots, f(a) = 0 and f(b) = 0, there is a point d element of (a,b) such that f'(d) = 0.

f'(x) = 3ax^2+b
Since ab>0, a and b must be both positive or both negative.
f'(d) = 3a(d)^2+b = 3ad^2+b not equal to 0 instead >0 since any values of d for d^2 will be positive.

Likewise f'(d) = 3a(d)^2 + b will not equal to 0 instead <0 for all negative values of a and b.

Hence, a contradiction, f has exactly one root.
 
Physics news on Phys.org
Re: Using rolle's theorem to prove for roots

Your proof is essentially correct (although in one line you used $a$ and $b$ as roots of the polynomial whereas they’re already used as coefficients of the polynomial).

Since $ab>0$, $a$ and $b$ are either both positive or both negative; therefore $f'(x)=3ax^2+b$ is either always positive or always negative, i.e. it is never zero. If $f(x)$ had two distinct real roots, Rolle’s theorem would imply there was a point between the roots at which the derivative was zero – a contradiction. Hence the polynomial cannot have more than one real root.

Finally, note that the polynomial is cubic; therefore it must have at least one real root. Conclusion: it has exactly one real root.
 
Re: Using rolle's theorem to prove for roots

Olinguito said:
Your proof is essentially correct (although in one line you used $a$ and $b$ as roots of the polynomial whereas they’re already used as coefficients of the polynomial).

Since $ab>0$, $a$ and $b$ are either both positive or both negative; therefore $f'(x)=3ax^2+b$ is either always positive or always negative, i.e. it is never zero. If $f(x)$ had two distinct real roots, Rolle’s theorem would imply there was a point between the roots at which the derivative was zero – a contradiction. Hence the polynomial cannot have more than one real root.

Finally, note that the polynomial is cubic; therefore it must have at least one real root. Conclusion: it has exactly one real root.
Thanks, will change the usage of a and b accordingly.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K