MHB Using the roots of the equation find the value of a & b

  • Thread starter Thread starter mathlearn
  • Start date Start date
  • Tags Tags
    Roots Value
AI Thread Summary
The equation $(x+a)(x-b)=0$ has roots -3 and 2, leading to the relationships -a = -3 and b = 2, or b = -3 and -a = 2. Solving these gives two possible pairs: a = 3 and b = 2, or a = -2 and b = -3. The discussion emphasizes that the roots can be derived from the equation's structure, confirming the unordered nature of the pairs. Ultimately, the values of a and b can be determined through basic algebraic manipulation.
mathlearn
Messages
331
Reaction score
0
Hello everybody after a little while :D

The roots of the equation $(x+a) (x-b)= 0$ are -3 or 2. Find the value of $a$ & $b$

What should I do here ?

Many Thanks :)
 
Mathematics news on Phys.org
mathlearn said:
Hello everybody after a little while :D

The roots of the equation $(x+a) (x-b)= 0$ are -3 or 2. Find the value of $a$ & $b$

What should I do here ?

Many Thanks :)

what are the roots of equation $(x+a) (x-b)= 0$
they are -a and b. this is unordered pair

so -a = -3 , b = 2 or b = -3 and -a = 2
 
kaliprasad said:
what are the roots of equation $(x+a) (x-b)= 0$
they are -a and b. this is unordered pair

so -a = -3 , b = 2 or b = -3 and -a = 2

Thanks :D
 
The hard way: (x+ a)(x- b)= x^2+ (a- b)x- ab. By the quadratic formula, the roots of that equation are \frac{b- a\pm\sqrt{(a- b)^2- (-4)ab}}{2}= \frac{b- a\pm\sqrt{a^2- 2ab+ b^2+ 4ab}}{2a}= \frac{b- a\pm\sqrt{a^2+ 2ab+ b^2}}{2}= \frac{b- a\pm\sqrt{(a+ b)^2}}{2}= \frac{b- a\pm (a+ b)}{2} so x= \frac{b- a+ a+ b}{2}= b or x= \frac{b- a- a+ b}{2}= -a

Since we are told that the two roots are -3 and 2 we can have either a= -(-3)= 3 and b= 2 or a= -2 and b= -3.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top