In short, if we consider the group of symmetries of a regular octahedron, we see (or at least, the author of "Groups, Graphs and Trees" saw...) that the group is isomoprhic to(adsbygoogle = window.adsbygoogle || []).push({}); Z[tex]\otimes[/tex]_{2}Z[tex]\otimes[/tex]_{2}Z[tex]\otimes[/tex]_{2}S- particularly since if we break up the vertices into 3 groups of front-back, top-bottom and left-right we get the first three factors and the second factor is obtained by further permutation. But my question is how does an element of a direct product act on an element of a graph? If we take a vertex v in the graph, since all symmetries commute here, if we apply a symmetry h in the direct product to v, we are thus applying 4 symmetries each in one of the factors of the direct product. So is the vertex taken to "coordinates" of whatever the direct product indicates similar to the way we consider 3 dimensional coordinates as in if we have the coordinates (1,2,3) we could move 2 in the y direction then 1 in the x and 3 in the z or 3 in the z direction THEN 2 in the y then 1 in the x etc. and thus the same process for the location of the vertex v after h is applied. Thanks in advance for your help - I know I probably rambled a bit..._{3}

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Validity of Direct Product Structure of Symmetry Group

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**