MHB Value of an expression involving complex numbers

Click For Summary
The expression 3^3 * 3^(i8pi/ln(3)) simplifies to 27 * (3^(i8pi) - 3^ln(3)), ultimately leading to 3^(3 + i25.1) - 90.26. Using Euler's identity, it is established that 3^(3 + i(8pi/ln(3))) equals 27. By evaluating the complex exponential, it is shown that 3^(i(8pi/ln(3))) simplifies to 1. Therefore, the final result of the expression is 27.
Uniman
Messages
11
Reaction score
0
View attachment 423

The answer is a number...

Work done so far

3^3 * 3^( i8pi/ln(3) ) = 27 * (3^ i8pi - 3^ln(3) ) = 27 *( 3^25.1i -3.34)

= 3^(3+ i25.1) - 90.26

If this is correct how can I convert this to a number...
 

Attachments

  • php0Lf6W7.png
    php0Lf6W7.png
    1.7 KB · Views: 89
Physics news on Phys.org
Re: Complex function

Uniman said:
https://www.physicsforums.com/attachments/423

The answer is a number...

Work done so far

3^3 * 3^( i8pi/ln(3) ) = 27 * (3^ i8pi - 3^ln(3) ) = 27 *( 3^25.1i -3.34)

= 3^(3+ i25.1) - 90.26

If this is correct how can I convert this to a number...


You can use Euler's identity to 'discover' that is...

$\displaystyle 3^{3 + i\ \frac{8\ \pi}{\ln 3}}= e^{3\ \ln 3}= 27$

Kind regards

$\chi$ $\sigma$
 
Last edited by a moderator:
Re: Complex function

Hello, Uniman!

\text{Evaluate: }\:X \;=\;3^{3 + \frac{8\pi}{\ln(3)}i}
We have: .X \;=\;3^3\cdot3^{\frac{8\pi}{\ln(3)}i} \;=\;27\cdot 3^{\frac{8\pi}{\ln(3)}i} .[1]

\text{Let }y \:=\:3^{\frac{8\pi}{\ln(3)}i}

\text{Take logs: }\:\ln(y) \;=\;\ln\left(3^{\frac{8\pi}{\ln(3)}i}\right) \;=\;\frac{8\pi}{\ln(3)}i\cdot\ln(3) \;=\;8\pi i

. . y \;=\;e^{8\pi i} \;=\;\left(e^{i\pi}\right)^8 \;=\;(\text{-}1)^8 \;=\;1Substitute into [1]: .X \;=\;27\cdot1 \;=\;\boxed{27}
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
21
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K