MHB Vandomo's question at Yahoo Answers regarding the binomial theorem

Click For Summary
In the discussion, Vandomo seeks help with a binomial expansion problem involving the expression (2K + X)^n, where the coefficients of X^2 and X^3 are equal. The solution utilizes the binomial theorem to establish the relationship between the coefficients, leading to the equation n choose 2 multiplied by (2k) equaling n choose 3. By applying the definition of binomial coefficients and simplifying, the conclusion is reached that n equals 6K + 2. This proof effectively demonstrates the required relationship between n and K in the context of the binomial expansion.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Binomial Expansion - Can Someone Please Help?

In the binomial expansion ( 2K + X) ^n, where K is an constant and n is a +ve integer, the coefficient of X^ 2 is = to the coefficient of X ^3.

Prove that n = 6 K + 2

If someone could please help, I'd be grateful.

Thanks.
Vandomo

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Vandomo,

According to the binomial theorem, we may state:

$$(2k+x)^n=\sum_{j=0}^n\left[{n \choose j}(2k)^{n-j}x^j \right]$$

Now, if the coefficients of the terms containing $x^2$ and $x^3$ are equal, then this implies:

$${n \choose 2}(2k)^{n-2}={n \choose 3}(2k)^{n-3}$$

Divide through by $$(2k)^{n-3}$$ to get:

$${n \choose 2}(2k)={n \choose 3}$$

Use the definition $${n \choose r}\equiv\frac{n!}{r!(n-r)!}$$ to now write:

$$\frac{n(n-1)}{2}(2k)=\frac{n(n-1)(n-2)}{6}$$

Multiply through by $$\frac{6}{n(n-1)}$$ to obtain:

$$6k=n-2$$

Arrange as:

$$n=6k+2$$

Shown as desired.
 

Similar threads