A Variation of the kinetic term in scalar field theory

Click For Summary
Varying the kinetic term in scalar field theory with respect to the metric tensor using two methods yields different results, specifically a discrepancy of a minus sign. Method 1 applies the variation directly to the metric, while Method 2 incorporates the relationship between covariant and contravariant metrics. The issue arises in Method 1, where the variations of the metric within the definitions of the derivatives are not accounted for. This oversight leads to an incomplete variation in the first method. Correctly including these variations resolves the discrepancy between the two methods.
Baela
Messages
17
Reaction score
2
Varying ##\partial_\lambda\phi\,\partial^\lambda\phi## wrt the metric tensor ##g_{\mu\nu}## in two different ways gives me different results. Obviously I'm doing something wrong. Where am I going wrong?

Method 1: \begin{equation}
(\delta g_{\mu\nu})\,\partial^\mu\phi\,\partial^\nu\phi
\end{equation}

Method 2: \begin{align}&\quad\,\, (\delta g^{\mu\nu})\,\partial_\mu\phi\,\partial_\nu\phi \nonumber \\
&=(-g^{\mu\rho}g^{\nu\sigma}\delta g_{\rho\sigma})\,\partial_\mu\phi\,\partial_\nu\phi \quad (\because \delta g^{\mu\nu}=-g^{\mu\rho}g^{\nu\sigma}\delta g_{\rho\sigma} \,\,\text{as can be checked by varying the identity}\,\, g^{\mu\lambda}g_{\lambda\nu}=\delta^\mu_\nu) \nonumber\\
&=-(\delta g_{\rho\sigma})\,\partial^\rho\phi\,\partial^\sigma\phi
\end{align}
The second result differs from the first one by a minus sign. What's going wrong?
 
Last edited:
Physics news on Phys.org
In Method 1 you are missing the variations of the metric inside the definitions ##\partial^\mu \phi = g^{\mu\nu}\partial_\nu \phi##.
 
Moderator's note: Spin-off from another thread due to topic change. In the second link referenced, there is a claim about a physical interpretation of frame field. Consider a family of observers whose worldlines fill a region of spacetime. Each of them carries a clock and a set of mutually orthogonal rulers. Each observer points in the (timelike) direction defined by its worldline's tangent at any given event along it. What about the rulers each of them carries ? My interpretation: each...

Similar threads

  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K
Replies
8
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
1
Views
468