A Variation of the kinetic term in scalar field theory

Baela
Messages
17
Reaction score
2
Varying ##\partial_\lambda\phi\,\partial^\lambda\phi## wrt the metric tensor ##g_{\mu\nu}## in two different ways gives me different results. Obviously I'm doing something wrong. Where am I going wrong?

Method 1: \begin{equation}
(\delta g_{\mu\nu})\,\partial^\mu\phi\,\partial^\nu\phi
\end{equation}

Method 2: \begin{align}&\quad\,\, (\delta g^{\mu\nu})\,\partial_\mu\phi\,\partial_\nu\phi \nonumber \\
&=(-g^{\mu\rho}g^{\nu\sigma}\delta g_{\rho\sigma})\,\partial_\mu\phi\,\partial_\nu\phi \quad (\because \delta g^{\mu\nu}=-g^{\mu\rho}g^{\nu\sigma}\delta g_{\rho\sigma} \,\,\text{as can be checked by varying the identity}\,\, g^{\mu\lambda}g_{\lambda\nu}=\delta^\mu_\nu) \nonumber\\
&=-(\delta g_{\rho\sigma})\,\partial^\rho\phi\,\partial^\sigma\phi
\end{align}
The second result differs from the first one by a minus sign. What's going wrong?
 
Last edited:
Physics news on Phys.org
In Method 1 you are missing the variations of the metric inside the definitions ##\partial^\mu \phi = g^{\mu\nu}\partial_\nu \phi##.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top