Variational symmetries for the Emden-Fowler equation

Click For Summary

Homework Help Overview

The discussion revolves around the Emden-Fowler equation, which is significant in astrophysics and arises from the Euler-Lagrange equation related to a specific functional. Participants are exploring variational symmetries and conservation laws associated with this equation.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Problem interpretation

Approaches and Questions Raised

  • The original poster attempts to derive partial derivatives and set up equations based on variational principles. They express confusion about how to properly group terms in their equations, particularly regarding the powers of derivatives and the presence of combination terms. Other participants verify the formulation of the functional and suggest resources for further exploration of symmetries related to the equation.

Discussion Status

The discussion is ongoing, with participants providing verification of equations and suggesting external resources for deeper understanding. There is no explicit consensus yet, as the original poster is still grappling with the grouping of terms and implications of their findings.

Contextual Notes

Participants are working under the constraints of homework rules, which may limit the depth of solutions discussed. The original poster expresses uncertainty about the implications of their derived equations and the assumptions underlying their approach.

giraffe714
Messages
21
Reaction score
2
Homework Statement
The Emden-Fowler equation of astrophysics is ## y'' + \frac{2}{x}y' + y^5 = 0 ## which arises as the Euler-Lagrange equation to the functional ## J(y) = \int_{x_0)^{x_1} \frac{x^2}{2}(y'^2-\frac{1}{3}y^6) dx ##. Find the infinitesimal generators that lead to a variational symmetry for this functional and establish the conservation law $$ x^2(y'y + 2x(y'^2+y^5)) = const. $$
Relevant Equations
$$ \xi \frac{\partial f}{\partial x} + \eta \frac{\partial f}{\partial y} + (\eta' - y'\xi')\frac{\partial f}{\partial y'} + \xi' f = 0 $$ where $$ \eta' = \frac{\partial \eta}{\partial x} + \frac{\partial \eta}{\partial y} y' $$ and $$ \xi' = \frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial y} y' $$, Noether's theorem $$ \eta \frac{\partial f}{\partial y'} + \xi (f - \frac{\partial f}{\partial y'}y') = const. $$
So firstly I calculated the partial derivatives of f to be:
$$ \frac{\partial f}{\partial x} = \frac{2x}{2} (y'^2 - \frac{1}{3} y^6) + \frac{x^2}{2} (2y'y'' - 2y^5y') = xy'^2 - \frac{1}{3} y^6 + x^2y'(y'' - y^5) $$
$$ \frac{\partial f}{\partial y} = \frac{x^2}{2}*\frac{1}{3}*6y^5 = x^2y^5 $$
$$ \frac{\partial f}{\partial y'} = \frac{x^2}{2}*2y' = x^2y' $$

And then I plugged that into the first equation in the "Relevant equations" (not sure what it's called,) with ## \xi_x = \partial \xi / \partial x ## etc. for conciseness:

$$ \xi (xy'^2 - \frac{1}{3}y^6 + x^2y'(y'' - y^5)) - \eta x^2y^5 + (\eta_x + \eta_y y' - \xi_x y' - \xi_y y'^2)x^2 y' + \xi_x (\frac{x^2}{2}(y'^2-\frac{1}{3}y^6) ) + \xi_y (\frac{x^2}{2}(y'^2-\frac{1}{3}y^6)) y' = 0 $$

Which after expanding everything hopefully gives

$$ \xi xy'^2 - \frac{1}{3} \xi y^6 + \xi x^2 y' (y'' - y^5) + \eta x^2 y^5 + \eta_x x^2 y' + \eta_y x^2 y'^2 - \xi_x x^2 y'^2 - \xi_y x^2 y'^3 + \xi_x \frac{x^2}{2} y'^2 - \xi_x \frac{x^2}{6} y^6 + \xi_y \frac{x^2}{2} y'^3 - \eta_y \frac{x^2}{6} y^6 y' = 0 $$

Upon regrouping with ## y'^2, y^6, y', y^5, y'^3, y^6y' ## (and this is probably where my mistake lies, but I don't know how to fix it) gives the equations

$$ \xi x + \eta_y x^2 - \eta_x x^2 + \eta_x \frac{x^2}{2} = 0 $$ (from ## y'^2 ##)
$$ -\frac{1}{3} \xi - \xi_x \frac{x^2}{6} = 0 $$ (from ## y^6 ##)
$$ \xi x^2 (y'' - y^5) + \eta_x x^2 = 0 $$ (from ## y' ##)
$$ \eta x^2 = 0 $$ (from ## y^5 ##)
$$ -\xi_y x^2 + \xi_y \frac{x^2}{2} = 0 $$ (from ## y'^3 ##)
$$ -\xi_y \frac{x^2}{6} = 0 $$ (from ## y^6y' ##)

But, the equation from ## y^5 ## implies that ## \eta = 0 ##, and plugging that into both the equation from ## y'^2 ## and ## y' ## implies ## \xi = 0 ##. This however can't be true since this problem has a conservation law by Noether's theorem in the problem statement. I guess what I'm not fully understanding in this problem is how to group the equations together. Is it just be ## y' ## and their powers? Is it also by ## y ##? What about combination terms like ## y^6y' ##? And if it's the former, what happens to the terms not involving ## y' ##?
 
Physics news on Phys.org
giraffe714 said:
Homework Statement: The Emden-Fowler equation of astrophysics is ## y'' + \frac{2}{x}y' + y^5 = 0 ## which arises as the Euler-Lagrange equation to the functional ## J(y) = \int_{x_0)^{x_1} \frac{x^2}{2}(y'^2-\frac{1}{3}y^6) dx ##. Find the infinitesimal generators that lead to a variational symmetry for this functional and establish the conservation law $$ x^2(y'y + 2x(y'^2+y^5)) = const. $$
Please verify that your equation for ##J(y)## that fails to render is:$$J\left(y\right)=\intop_{x_{0}}^{x_{1}}\frac{x^{2}}{2}(y'^{2}-\frac{1}{3}y^{6})dx$$
 
renormalize said:
Please verify that your equation for ##J(y)## that fails to render is:$$J\left(y\right)=\intop_{x_{0}}^{x_{1}}\frac{x^{2}}{2}(y'^{2}-\frac{1}{3}y^{6})dx$$
Oh, yes, that's correct, my apologies.
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
6
Views
2K
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K