Variational symmetries for the Emden-Fowler equation

giraffe714
Messages
21
Reaction score
2
Homework Statement
The Emden-Fowler equation of astrophysics is ## y'' + \frac{2}{x}y' + y^5 = 0 ## which arises as the Euler-Lagrange equation to the functional ## J(y) = \int_{x_0)^{x_1} \frac{x^2}{2}(y'^2-\frac{1}{3}y^6) dx ##. Find the infinitesimal generators that lead to a variational symmetry for this functional and establish the conservation law $$ x^2(y'y + 2x(y'^2+y^5)) = const. $$
Relevant Equations
$$ \xi \frac{\partial f}{\partial x} + \eta \frac{\partial f}{\partial y} + (\eta' - y'\xi')\frac{\partial f}{\partial y'} + \xi' f = 0 $$ where $$ \eta' = \frac{\partial \eta}{\partial x} + \frac{\partial \eta}{\partial y} y' $$ and $$ \xi' = \frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial y} y' $$, Noether's theorem $$ \eta \frac{\partial f}{\partial y'} + \xi (f - \frac{\partial f}{\partial y'}y') = const. $$
So firstly I calculated the partial derivatives of f to be:
$$ \frac{\partial f}{\partial x} = \frac{2x}{2} (y'^2 - \frac{1}{3} y^6) + \frac{x^2}{2} (2y'y'' - 2y^5y') = xy'^2 - \frac{1}{3} y^6 + x^2y'(y'' - y^5) $$
$$ \frac{\partial f}{\partial y} = \frac{x^2}{2}*\frac{1}{3}*6y^5 = x^2y^5 $$
$$ \frac{\partial f}{\partial y'} = \frac{x^2}{2}*2y' = x^2y' $$

And then I plugged that into the first equation in the "Relevant equations" (not sure what it's called,) with ## \xi_x = \partial \xi / \partial x ## etc. for conciseness:

$$ \xi (xy'^2 - \frac{1}{3}y^6 + x^2y'(y'' - y^5)) - \eta x^2y^5 + (\eta_x + \eta_y y' - \xi_x y' - \xi_y y'^2)x^2 y' + \xi_x (\frac{x^2}{2}(y'^2-\frac{1}{3}y^6) ) + \xi_y (\frac{x^2}{2}(y'^2-\frac{1}{3}y^6)) y' = 0 $$

Which after expanding everything hopefully gives

$$ \xi xy'^2 - \frac{1}{3} \xi y^6 + \xi x^2 y' (y'' - y^5) + \eta x^2 y^5 + \eta_x x^2 y' + \eta_y x^2 y'^2 - \xi_x x^2 y'^2 - \xi_y x^2 y'^3 + \xi_x \frac{x^2}{2} y'^2 - \xi_x \frac{x^2}{6} y^6 + \xi_y \frac{x^2}{2} y'^3 - \eta_y \frac{x^2}{6} y^6 y' = 0 $$

Upon regrouping with ## y'^2, y^6, y', y^5, y'^3, y^6y' ## (and this is probably where my mistake lies, but I don't know how to fix it) gives the equations

$$ \xi x + \eta_y x^2 - \eta_x x^2 + \eta_x \frac{x^2}{2} = 0 $$ (from ## y'^2 ##)
$$ -\frac{1}{3} \xi - \xi_x \frac{x^2}{6} = 0 $$ (from ## y^6 ##)
$$ \xi x^2 (y'' - y^5) + \eta_x x^2 = 0 $$ (from ## y' ##)
$$ \eta x^2 = 0 $$ (from ## y^5 ##)
$$ -\xi_y x^2 + \xi_y \frac{x^2}{2} = 0 $$ (from ## y'^3 ##)
$$ -\xi_y \frac{x^2}{6} = 0 $$ (from ## y^6y' ##)

But, the equation from ## y^5 ## implies that ## \eta = 0 ##, and plugging that into both the equation from ## y'^2 ## and ## y' ## implies ## \xi = 0 ##. This however can't be true since this problem has a conservation law by Noether's theorem in the problem statement. I guess what I'm not fully understanding in this problem is how to group the equations together. Is it just be ## y' ## and their powers? Is it also by ## y ##? What about combination terms like ## y^6y' ##? And if it's the former, what happens to the terms not involving ## y' ##?
 
Physics news on Phys.org
giraffe714 said:
Homework Statement: The Emden-Fowler equation of astrophysics is ## y'' + \frac{2}{x}y' + y^5 = 0 ## which arises as the Euler-Lagrange equation to the functional ## J(y) = \int_{x_0)^{x_1} \frac{x^2}{2}(y'^2-\frac{1}{3}y^6) dx ##. Find the infinitesimal generators that lead to a variational symmetry for this functional and establish the conservation law $$ x^2(y'y + 2x(y'^2+y^5)) = const. $$
Please verify that your equation for ##J(y)## that fails to render is:$$J\left(y\right)=\intop_{x_{0}}^{x_{1}}\frac{x^{2}}{2}(y'^{2}-\frac{1}{3}y^{6})dx$$
 
renormalize said:
Please verify that your equation for ##J(y)## that fails to render is:$$J\left(y\right)=\intop_{x_{0}}^{x_{1}}\frac{x^{2}}{2}(y'^{2}-\frac{1}{3}y^{6})dx$$
Oh, yes, that's correct, my apologies.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top