Varying an action with respect to a scalar field

AI Thread Summary
The discussion focuses on varying an action with respect to a scalar field within the context of a flat Robertson-Walker metric. The computation reveals that the variation leads to a condition involving the scalar field's second derivative and its potential. A key point of confusion arises regarding the inclusion of the spatial term and the proper treatment of the metric's determinant during the variation process. The final result correctly incorporates the scale factor's influence, yielding a modified equation of motion for the scalar field that includes a damping term proportional to the expansion rate of the universe. The conversation emphasizes the importance of careful handling of variations and the implications of the metric on the dynamics of the scalar field.
JD_PM
Messages
1,125
Reaction score
156
Homework Statement
Given the action



\begin{equation*}
S = \int d^4 x \sqrt{-\det g} \left( -\frac 1 2 g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi)\right)
\end{equation*}

Vary the action with respect to the scalar field ##\phi(x)## and obtain



\begin{equation*}
\ddot \phi + 3\left( \frac{\dot a}{a}\right) \dot \phi = -\frac{\partial V(\phi)}{\partial \phi}
\end{equation*}
Relevant Equations
Please check below
Let us work with ##(-+++)## signature

Where the metric ##g_{\mu \nu}## is the flat version (i.e. ##K=0##) of the Robertson–Walker metric (I personally liked how Weinberg derived it in his Cosmology book, section 1.1)

\begin{equation*}
(ds)^2 = -(dt)^2 + a^2(t) (d \vec x)^2
\end{equation*}

Hence ##\sqrt{-\det g} = a^3##

My computation is the following

\begin{align*}
\delta S &= \int d^4 x \delta \left[ \sqrt{-\det g} \left( -\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right)\right]\\
&= \int d^4 x \left[ \sqrt{-\det g} \left( -\frac{1}{2} g^{\mu \nu} \delta \left(\partial_{\mu} \phi \partial_{\nu} \phi\right) - \underbrace{\delta V(\phi)}_{=\frac{\partial V(\phi)}{\partial \phi}\delta \phi} \right)\right]\\
&= \int d^4 x \left[ \sqrt{-\det g} \left( -\underbrace{g^{\mu \nu} \left(\partial_{\mu} \phi \ \delta( \partial_{\nu} \phi) \right)}_{=g^{\mu \nu} \left(\partial_{\mu} \phi \ \partial_{\nu}( \delta \phi) \right)} - \frac{\partial V(\phi)}{\partial \phi}\delta \phi \right)\right]\\
&= \int d^4 x \left[ \sqrt{-\det g} \left( g^{\mu \nu} \partial_{\mu} \partial_{\nu} \phi - \frac{\partial V(\phi)}{\partial \phi} \right)\right]( \delta \phi)\\
&+ \underbrace{\int d^4 x \left[ \sqrt{-\det g} \left( \partial_{\nu} \left( g^{\mu \nu} \partial_{\mu} \phi \delta \phi\right) \right)\right]( \delta \phi)}_{\text{Surface term vanishes}}
\end{align*}

Hence I get

\begin{equation*}
\delta S = 0 \iff \sqrt{-g}\left( \partial^{\mu}\partial_{\mu} \phi - \frac{\partial V(\phi)}{\partial \phi}\right) = 0
\end{equation*}

But the above equation leads to the following timelike component

\begin{equation*}
-\partial^{0}\partial_{0} \phi - \frac{\partial V(\phi)}{\partial \phi} = 0 \Rightarrow \ddot \phi = - \frac{\partial V(\phi)}{\partial \phi}
\end{equation*}

So I am missing the ##3(\dot a / a)\dot \phi## term.

First thought that my mistake was not including the following well-known variation
\begin{equation*}
\delta \sqrt{-g} = \frac{\sqrt{-g}}{2}g^{\mu \nu} \delta g_{\mu \nu} = -\frac{\sqrt{-g}}{2} g_{\mu \nu}\delta g^{\mu \nu}
\end{equation*}

But given that they explicitly state that we should vary wrt the scalar field I interpreted this as taking ##\delta g_{\mu \nu} \to 0##. Is such interpretation wrong? Is the solution to my issue simply including this variation in my computation?

Thank you! :biggrin:
 
Physics news on Phys.org
JD_PM said:
\begin{equation*}

\delta S = 0 \iff \sqrt{-g}\left( \partial^{\mu}\partial_{\mu} \phi - \frac{\partial V(\phi)}{\partial \phi}\right) = 0

\end{equation*}But the above equation leads to the following timelike component
\begin{equation*}
-\partial^{0}\partial_{0} \phi - \frac{\partial V(\phi)}{\partial \phi} = 0 \Rightarrow \ddot \phi = - \frac{\partial V(\phi)}{\partial \phi}
\end{equation*} So I am missing the ##3(\dot a / a)\dot \phi## term.
Hey JD, I don't know anything about this metric or topic, although from the original action I derived the same condition that ##\partial^{\mu} \partial_{\mu} \phi = \partial V / \partial \phi## but then instead considered that with the ##(-+++)## sig, and with ##i \in \{1,2,3 \}##$$
\begin{align*}
\partial^{\mu} \partial_{\mu} \phi & = \partial^0 \partial_0 \phi + \partial^i \partial_i \phi \\ \\

\partial^{\mu} \partial_{\mu} \phi &= - \partial_0 \partial_0 \phi + \partial_i \partial_i \phi \\ \\

\partial^{\mu} \partial_{\mu} \phi &= - \ddot{\phi} + \nabla^2 \phi \overset{!}{=} \frac{\partial V}{\partial \phi} \implies \ddot{\phi} - \nabla^2 \phi = - \frac{\partial V}{\partial \phi}
\end{align*}$$I don't know how you might turn the ##\nabla^2 \phi## term into something involving scale factors, but wondered if perhaps you didn't take into account the summation?

[And also, the second time derivative ##\partial^2 / \partial t^2 = \partial_0 \partial_0## with indices down, right? 😬]
 
etotheipi said:
[...] perhaps you didn't take into account the summation?

[And also, the second time derivative ##\partial^2 / \partial t^2 = \partial_0 \partial_0## with indices down, right? 😬]

Absolutely right, thanks James 😜 I indeed missed the spatial term! We have

$$\ddot{\phi} - \nabla^2 \phi = - \frac{\partial V}{\partial \phi}$$

All what's left is to show that

\begin{equation}
\nabla^2 \phi = -3 \left( \frac{\dot a}{a}\right) \phi \tag{1}
\end{equation}

I am quite confident ##(1)## can be derived out of the fact that the real scalar field ##\phi## satisfies Poisson's equation ##\nabla^2 \phi = 4 \pi G_N \rho## (for instance, for some reference, check Tong's beautiful lecture notes EQ. (0.1)) AND the flat first Friedmann equation (let us not include the cosmological constant)

\begin{equation}
\left( \frac{\dot a}{a} \right)^2 = \frac{8 \pi G_N}{3} \rho \tag{F1}
\end{equation}

Remark: we can use Friedmann equations given that we are assuming an homogeneous and isotropic universe (which is implied in the metric we are using in this particular exercise). If you are interested in Cosmology, I strongly recommend probably the most complete, enlightening GR lecture notes I've ever come across: Matthias Blau's GR lecture notes. Friedmann equations are in EQ. (35.108).

Hence, using ##\nabla^2 \phi = 4 \pi G_N \rho## and ##(F1)## we find

\begin{equation*}
\nabla^2 \phi = -3 \left( \frac{\dot a}{a}\right) \phi \iff \phi := -\frac 1 2 \left( \frac{\dot a}{a}\right)
\end{equation*}

Argh... honestly I am not satisfied with my answer. I have been "forcing" the pieces to fit...

I will have a walk to refresh my mind!
 
JD_PM said:
\begin{align*}
& \int d^4 x \left[ \sqrt{-\det g} \left( -\underbrace{g^{\mu \nu} \left(\partial_{\mu} \phi \ \delta( \partial_{\nu} \phi) \right)}_{=g^{\mu \nu} \left(\partial_{\mu} \phi \ \partial_{\nu}( \delta \phi) \right)} - \frac{\partial V(\phi)}{\partial \phi}\delta \phi \right)\right]\\
&= \int d^4 x \left[ \sqrt{-\det g} \left( g^{\mu \nu} \partial_{\mu} \partial_{\nu} \phi - \frac{\partial V(\phi)}{\partial \phi} \right)\right]( \delta \phi)\\
&+ \underbrace{\int d^4 x \left[ \sqrt{-\det g} \left( \partial_{\nu} \left( g^{\mu \nu} \partial_{\mu} \phi \delta \phi\right) \right)\right]( \delta \phi)}_{\text{Surface term vanishes}}
\end{align*}
The factor ##\sqrt{-\det g} = a^3## is part of the Lagrangian density. So, after doing the integration by parts in order to "shift" the derivative ##\partial_{\nu}##,you get
\begin{align*}
& \int d^4 x \left[ a^3 \left( -\underbrace{g^{\mu \nu} \left(\partial_{\mu} \phi \ \delta( \partial_{\nu} \phi) \right)}_{=g^{\mu \nu} \left(\partial_{\mu} \phi \ \partial_{\nu}( \delta \phi) \right)} - \frac{\partial V(\phi)}{\partial \phi}\delta \phi \right)\right]\\
&= \int d^4 x \left[ \left( g^{\mu \nu} \partial_{\nu} \left( a^3 \partial_{\mu} \phi \right) - a^3 \frac{ \partial V(\phi)}{\partial \phi} \right)\right]( \delta \phi)+ {\text{Surface term}}
\end{align*}

If you want to take a shortcut, you can use the Euler-Lagrange equations as given by equation (10) here.
Be sure to include ##\sqrt{-\det g}## as part of ##\mathcal L##.
 
  • Love
  • Like
Likes JD_PM and etotheipi
[Ahh clever, @TSny! I'd forgotten that with this metric the Christoffel symbols (obviously!) don't vanish, so ##\nabla_{\mu} \neq \partial_{\mu}## and for this particular term from the IBP, the second and third terms are not equal:$$\int d^4 x \partial_{\mu} (\sqrt{-g} g^{\mu \nu} \partial_{\nu} \phi ) \delta \phi = \int d^4 x (\sqrt{-g} g^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \phi) \delta \phi \, \, \neq \, \, \int d^4 x (\sqrt{-g} g^{\mu \nu} \partial_{\mu} \partial_{\nu} \phi) \delta \phi$$... :smile:]

...Anyway, I will be quiet now 🤫
 
Last edited by a moderator:
TSny said:
The factor ##\sqrt{-\det g} = a^3## is part of the Lagrangian density. So, after doing the integration by parts in order to "shift" the derivative ##\partial_{\nu}##,you get
\begin{align*}
& \int d^4 x \left[ a^3 \left( -\underbrace{g^{\mu \nu} \left(\partial_{\mu} \phi \ \delta( \partial_{\nu} \phi) \right)}_{=g^{\mu \nu} \left(\partial_{\mu} \phi \ \partial_{\nu}( \delta \phi) \right)} - \frac{\partial V(\phi)}{\partial \phi}\delta \phi \right)\right]\\
&= \int d^4 x \left[ \left( g^{\mu \nu} \partial_{\nu} \left( a^3 \partial_{\mu} \phi \right) - a^3 \frac{ \partial V(\phi)}{\partial \phi} \right)\right]( \delta \phi)+ {\text{Surface term}}
\end{align*}

If you want to take a shortcut, you can use the Euler-Lagrange equations as given by equation (10) here.
Be sure to include ##\sqrt{-\det g}## as part of ##\mathcal L##.

Ohhh I understand what my mistake was now! 😍. We have

\begin{equation}
\delta S = 0 \iff \partial^{\mu}\left(a^3 \partial_{\mu} \phi\right) - a^3 \frac{ \partial V(\phi)}{\partial \phi} = 0 \tag{2}
\end{equation}

Oops I forgot to mention that we are dealing with a homogeneous scalar field (i.e. ##\partial_i \phi = 0##) 😅. Hence ##(2)## becomes

\begin{align}
&-\partial_{0}\left(a^3 \dot \phi \right) - a^3 \frac{ \partial V(\phi)}{\partial \phi} = 0 \Rightarrow \nonumber \\
&\Rightarrow 3a^2 \dot a \dot \phi + a^3 \ddot \phi + a^3 \frac{ \partial V(\phi)}{\partial \phi} = 0 \Rightarrow \tag{3} \\
&\Rightarrow
\ddot \phi + 3\left( \frac{\dot a}{a}\right) \dot \phi = -\frac{\partial V(\phi)}{\partial \phi} \nonumber
\end{align}

Where to get to the last line I simply multiplied both sides of ##(3)## by ##1/a^3##

Once again @TSny, hats off to you! :smile:
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top