Varying an action with respect to a scalar field

Click For Summary
SUMMARY

The discussion centers on the variation of an action with respect to a scalar field in the context of a flat Robertson-Walker metric, specifically using the ##(-+++)## signature. The participants derive the equation of motion for the scalar field, concluding that the correct form includes a term for the scale factor's time derivative, leading to the equation ##\ddot{\phi} + 3(\dot{a}/a)\dot{\phi} = -\partial V/\partial \phi##. They emphasize the importance of including the variation of the metric and the scalar field in the computation of the action.

PREREQUISITES
  • Understanding of the Robertson-Walker metric and its implications in cosmology.
  • Familiarity with variational principles in field theory.
  • Knowledge of scalar fields and potential functions in theoretical physics.
  • Proficiency in tensor calculus and manipulation of indices.
NEXT STEPS
  • Study the derivation of the Euler-Lagrange equations in the context of field theory.
  • Learn about the Friedmann equations and their applications in cosmology.
  • Explore the implications of scalar fields in cosmological models, particularly in inflationary theory.
  • Investigate the role of the scale factor in the dynamics of the universe and its effect on scalar fields.
USEFUL FOR

The discussion is beneficial for theoretical physicists, cosmologists, and graduate students focusing on general relativity and field theory, particularly those interested in the dynamics of scalar fields in cosmological contexts.

JD_PM
Messages
1,125
Reaction score
156
Homework Statement
Given the action



\begin{equation*}
S = \int d^4 x \sqrt{-\det g} \left( -\frac 1 2 g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi)\right)
\end{equation*}

Vary the action with respect to the scalar field ##\phi(x)## and obtain



\begin{equation*}
\ddot \phi + 3\left( \frac{\dot a}{a}\right) \dot \phi = -\frac{\partial V(\phi)}{\partial \phi}
\end{equation*}
Relevant Equations
Please check below
Let us work with ##(-+++)## signature

Where the metric ##g_{\mu \nu}## is the flat version (i.e. ##K=0##) of the Robertson–Walker metric (I personally liked how Weinberg derived it in his Cosmology book, section 1.1)

\begin{equation*}
(ds)^2 = -(dt)^2 + a^2(t) (d \vec x)^2
\end{equation*}

Hence ##\sqrt{-\det g} = a^3##

My computation is the following

\begin{align*}
\delta S &= \int d^4 x \delta \left[ \sqrt{-\det g} \left( -\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right)\right]\\
&= \int d^4 x \left[ \sqrt{-\det g} \left( -\frac{1}{2} g^{\mu \nu} \delta \left(\partial_{\mu} \phi \partial_{\nu} \phi\right) - \underbrace{\delta V(\phi)}_{=\frac{\partial V(\phi)}{\partial \phi}\delta \phi} \right)\right]\\
&= \int d^4 x \left[ \sqrt{-\det g} \left( -\underbrace{g^{\mu \nu} \left(\partial_{\mu} \phi \ \delta( \partial_{\nu} \phi) \right)}_{=g^{\mu \nu} \left(\partial_{\mu} \phi \ \partial_{\nu}( \delta \phi) \right)} - \frac{\partial V(\phi)}{\partial \phi}\delta \phi \right)\right]\\
&= \int d^4 x \left[ \sqrt{-\det g} \left( g^{\mu \nu} \partial_{\mu} \partial_{\nu} \phi - \frac{\partial V(\phi)}{\partial \phi} \right)\right]( \delta \phi)\\
&+ \underbrace{\int d^4 x \left[ \sqrt{-\det g} \left( \partial_{\nu} \left( g^{\mu \nu} \partial_{\mu} \phi \delta \phi\right) \right)\right]( \delta \phi)}_{\text{Surface term vanishes}}
\end{align*}

Hence I get

\begin{equation*}
\delta S = 0 \iff \sqrt{-g}\left( \partial^{\mu}\partial_{\mu} \phi - \frac{\partial V(\phi)}{\partial \phi}\right) = 0
\end{equation*}

But the above equation leads to the following timelike component

\begin{equation*}
-\partial^{0}\partial_{0} \phi - \frac{\partial V(\phi)}{\partial \phi} = 0 \Rightarrow \ddot \phi = - \frac{\partial V(\phi)}{\partial \phi}
\end{equation*}

So I am missing the ##3(\dot a / a)\dot \phi## term.

First thought that my mistake was not including the following well-known variation
\begin{equation*}
\delta \sqrt{-g} = \frac{\sqrt{-g}}{2}g^{\mu \nu} \delta g_{\mu \nu} = -\frac{\sqrt{-g}}{2} g_{\mu \nu}\delta g^{\mu \nu}
\end{equation*}

But given that they explicitly state that we should vary wrt the scalar field I interpreted this as taking ##\delta g_{\mu \nu} \to 0##. Is such interpretation wrong? Is the solution to my issue simply including this variation in my computation?

Thank you! :biggrin:
 
  • Like
Likes   Reactions: etotheipi
Physics news on Phys.org
JD_PM said:
\begin{equation*}

\delta S = 0 \iff \sqrt{-g}\left( \partial^{\mu}\partial_{\mu} \phi - \frac{\partial V(\phi)}{\partial \phi}\right) = 0

\end{equation*}But the above equation leads to the following timelike component
\begin{equation*}
-\partial^{0}\partial_{0} \phi - \frac{\partial V(\phi)}{\partial \phi} = 0 \Rightarrow \ddot \phi = - \frac{\partial V(\phi)}{\partial \phi}
\end{equation*} So I am missing the ##3(\dot a / a)\dot \phi## term.
Hey JD, I don't know anything about this metric or topic, although from the original action I derived the same condition that ##\partial^{\mu} \partial_{\mu} \phi = \partial V / \partial \phi## but then instead considered that with the ##(-+++)## sig, and with ##i \in \{1,2,3 \}##$$
\begin{align*}
\partial^{\mu} \partial_{\mu} \phi & = \partial^0 \partial_0 \phi + \partial^i \partial_i \phi \\ \\

\partial^{\mu} \partial_{\mu} \phi &= - \partial_0 \partial_0 \phi + \partial_i \partial_i \phi \\ \\

\partial^{\mu} \partial_{\mu} \phi &= - \ddot{\phi} + \nabla^2 \phi \overset{!}{=} \frac{\partial V}{\partial \phi} \implies \ddot{\phi} - \nabla^2 \phi = - \frac{\partial V}{\partial \phi}
\end{align*}$$I don't know how you might turn the ##\nabla^2 \phi## term into something involving scale factors, but wondered if perhaps you didn't take into account the summation?

[And also, the second time derivative ##\partial^2 / \partial t^2 = \partial_0 \partial_0## with indices down, right? 😬]
 
  • Like
Likes   Reactions: JD_PM
etotheipi said:
[...] perhaps you didn't take into account the summation?

[And also, the second time derivative ##\partial^2 / \partial t^2 = \partial_0 \partial_0## with indices down, right? 😬]

Absolutely right, thanks James 😜 I indeed missed the spatial term! We have

$$\ddot{\phi} - \nabla^2 \phi = - \frac{\partial V}{\partial \phi}$$

All what's left is to show that

\begin{equation}
\nabla^2 \phi = -3 \left( \frac{\dot a}{a}\right) \phi \tag{1}
\end{equation}

I am quite confident ##(1)## can be derived out of the fact that the real scalar field ##\phi## satisfies Poisson's equation ##\nabla^2 \phi = 4 \pi G_N \rho## (for instance, for some reference, check Tong's beautiful lecture notes EQ. (0.1)) AND the flat first Friedmann equation (let us not include the cosmological constant)

\begin{equation}
\left( \frac{\dot a}{a} \right)^2 = \frac{8 \pi G_N}{3} \rho \tag{F1}
\end{equation}

Remark: we can use Friedmann equations given that we are assuming an homogeneous and isotropic universe (which is implied in the metric we are using in this particular exercise). If you are interested in Cosmology, I strongly recommend probably the most complete, enlightening GR lecture notes I've ever come across: Matthias Blau's GR lecture notes. Friedmann equations are in EQ. (35.108).

Hence, using ##\nabla^2 \phi = 4 \pi G_N \rho## and ##(F1)## we find

\begin{equation*}
\nabla^2 \phi = -3 \left( \frac{\dot a}{a}\right) \phi \iff \phi := -\frac 1 2 \left( \frac{\dot a}{a}\right)
\end{equation*}

Argh... honestly I am not satisfied with my answer. I have been "forcing" the pieces to fit...

I will have a walk to refresh my mind!
 
JD_PM said:
\begin{align*}
& \int d^4 x \left[ \sqrt{-\det g} \left( -\underbrace{g^{\mu \nu} \left(\partial_{\mu} \phi \ \delta( \partial_{\nu} \phi) \right)}_{=g^{\mu \nu} \left(\partial_{\mu} \phi \ \partial_{\nu}( \delta \phi) \right)} - \frac{\partial V(\phi)}{\partial \phi}\delta \phi \right)\right]\\
&= \int d^4 x \left[ \sqrt{-\det g} \left( g^{\mu \nu} \partial_{\mu} \partial_{\nu} \phi - \frac{\partial V(\phi)}{\partial \phi} \right)\right]( \delta \phi)\\
&+ \underbrace{\int d^4 x \left[ \sqrt{-\det g} \left( \partial_{\nu} \left( g^{\mu \nu} \partial_{\mu} \phi \delta \phi\right) \right)\right]( \delta \phi)}_{\text{Surface term vanishes}}
\end{align*}
The factor ##\sqrt{-\det g} = a^3## is part of the Lagrangian density. So, after doing the integration by parts in order to "shift" the derivative ##\partial_{\nu}##,you get
\begin{align*}
& \int d^4 x \left[ a^3 \left( -\underbrace{g^{\mu \nu} \left(\partial_{\mu} \phi \ \delta( \partial_{\nu} \phi) \right)}_{=g^{\mu \nu} \left(\partial_{\mu} \phi \ \partial_{\nu}( \delta \phi) \right)} - \frac{\partial V(\phi)}{\partial \phi}\delta \phi \right)\right]\\
&= \int d^4 x \left[ \left( g^{\mu \nu} \partial_{\nu} \left( a^3 \partial_{\mu} \phi \right) - a^3 \frac{ \partial V(\phi)}{\partial \phi} \right)\right]( \delta \phi)+ {\text{Surface term}}
\end{align*}

If you want to take a shortcut, you can use the Euler-Lagrange equations as given by equation (10) here.
Be sure to include ##\sqrt{-\det g}## as part of ##\mathcal L##.
 
  • Love
  • Like
Likes   Reactions: JD_PM and etotheipi
[Ahh clever, @TSny! I'd forgotten that with this metric the Christoffel symbols (obviously!) don't vanish, so ##\nabla_{\mu} \neq \partial_{\mu}## and for this particular term from the IBP, the second and third terms are not equal:$$\int d^4 x \partial_{\mu} (\sqrt{-g} g^{\mu \nu} \partial_{\nu} \phi ) \delta \phi = \int d^4 x (\sqrt{-g} g^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \phi) \delta \phi \, \, \neq \, \, \int d^4 x (\sqrt{-g} g^{\mu \nu} \partial_{\mu} \partial_{\nu} \phi) \delta \phi$$... :smile:]

...Anyway, I will be quiet now 🤫
 
Last edited by a moderator:
  • Like
Likes   Reactions: JD_PM
TSny said:
The factor ##\sqrt{-\det g} = a^3## is part of the Lagrangian density. So, after doing the integration by parts in order to "shift" the derivative ##\partial_{\nu}##,you get
\begin{align*}
& \int d^4 x \left[ a^3 \left( -\underbrace{g^{\mu \nu} \left(\partial_{\mu} \phi \ \delta( \partial_{\nu} \phi) \right)}_{=g^{\mu \nu} \left(\partial_{\mu} \phi \ \partial_{\nu}( \delta \phi) \right)} - \frac{\partial V(\phi)}{\partial \phi}\delta \phi \right)\right]\\
&= \int d^4 x \left[ \left( g^{\mu \nu} \partial_{\nu} \left( a^3 \partial_{\mu} \phi \right) - a^3 \frac{ \partial V(\phi)}{\partial \phi} \right)\right]( \delta \phi)+ {\text{Surface term}}
\end{align*}

If you want to take a shortcut, you can use the Euler-Lagrange equations as given by equation (10) here.
Be sure to include ##\sqrt{-\det g}## as part of ##\mathcal L##.

Ohhh I understand what my mistake was now! 😍. We have

\begin{equation}
\delta S = 0 \iff \partial^{\mu}\left(a^3 \partial_{\mu} \phi\right) - a^3 \frac{ \partial V(\phi)}{\partial \phi} = 0 \tag{2}
\end{equation}

Oops I forgot to mention that we are dealing with a homogeneous scalar field (i.e. ##\partial_i \phi = 0##) 😅. Hence ##(2)## becomes

\begin{align}
&-\partial_{0}\left(a^3 \dot \phi \right) - a^3 \frac{ \partial V(\phi)}{\partial \phi} = 0 \Rightarrow \nonumber \\
&\Rightarrow 3a^2 \dot a \dot \phi + a^3 \ddot \phi + a^3 \frac{ \partial V(\phi)}{\partial \phi} = 0 \Rightarrow \tag{3} \\
&\Rightarrow
\ddot \phi + 3\left( \frac{\dot a}{a}\right) \dot \phi = -\frac{\partial V(\phi)}{\partial \phi} \nonumber
\end{align}

Where to get to the last line I simply multiplied both sides of ##(3)## by ##1/a^3##

Once again @TSny, hats off to you! :smile:
 
  • Like
Likes   Reactions: etotheipi

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
0
Views
2K
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
Replies
10
Views
2K
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K