I Vector and Plane Relationship in 3D

Click For Summary
If a vector is contained within a plane, the normal vector of that plane is indeed orthogonal to the vector. This relationship is defined by the properties of normality in geometry, where the normal vector is perpendicular to all vectors lying in the plane. The discussion elaborates on the mathematical definitions, stating that the inner product of the normal vector with any vector in the plane equals zero. This is demonstrated using the definitions of the plane and the normal vector, confirming that the normal vector maintains its orthogonality to any linear combination of vectors in the plane. The principles outlined affirm the geometric constraints of normal vectors in three-dimensional space.
Travis Enigma
Messages
13
Reaction score
4
TL;DR
Vector contained inside the plane.
I have a quick question. If a Vector is contained inside a plane, would the normal of the plane be orthogonal to said vector?

Thank you!
 
Physics news on Phys.org
Yes. The normal vector of the plane is perpendicular to all vectors in the plane.
 
  • Like
Likes jedishrfu and Travis Enigma
Okay thank you so much!
 
fresh_42 said:
Yes. The normal vector of the plane is perpendicular to all vectors in the plane.
Does that statement relate to some axiom / definition? Pardon my non-mathematical ignorance but what constrains the normal not to be anywhere in 3D? (I'm thinking Geometry here)
 
Let ##P:=\mathbb{R}\cdot \vec{p} \oplus \mathbb{R}\cdot \vec{q}## be the plane and ##\vec{n}## its normal vector. Then ##\langle \vec{n},P \rangle =0## by definition of normality. This means that ##\langle \vec{n},\lambda \vec{p}+\mu \vec{q} \rangle=0## for all ##\lambda ,\mu \in \mathbb{R}.## This is especially true for the given vector contained in the plane whose coordinates are a specific pair ##(\lambda ,\mu).##

If you define normality by ##\vec{n} \perp \vec{p}\, \wedge \vec{n}\perp \vec{q} \,,## then we get
$$
0=\lambda \cdot 0+\mu\cdot 0=\lambda \langle \vec{n},\vec{p}\rangle +\mu \langle \vec{n},\vec{q}\rangle=\langle \vec{n},\lambda \vec{p}+\mu\vec{q}\rangle
$$
and again ##\vec{n}\perp \lambda \vec{p}+\mu\vec{q}## for a given pair of coordinates ##(\lambda ,\mu).##
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
10
Views
2K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K