Solving 3D Vector Equation for ##\vec{y}##

  • Thread starter Thread starter Robin04
  • Start date Start date
  • Tags Tags
    3d Vector
Click For Summary
SUMMARY

The discussion focuses on solving the vector equation ##\vec{a} \times (8\vec{y}+\vec{b}) = \vec{b}\times(-5\vec{y}+\vec{a})##, where ##\vec{a}## and ##\vec{b}## are linearly independent vectors in three-dimensional space. Participants derived the equation to express ##\vec{y}## as a linear combination of ##\vec{a}##, ##\vec{b}##, and ##\vec{b} \times \vec{a}##, ultimately concluding that the coefficient ##\gamma## must equal zero for the equation to hold true. The discussion highlighted the importance of correctly identifying coefficients and verifying solutions through substitution into the original equation.

PREREQUISITES
  • Understanding of vector operations, including cross products.
  • Familiarity with linear independence in vector spaces.
  • Knowledge of solving linear equations involving multiple variables.
  • Basic proficiency in mathematical notation and manipulation of vectors.
NEXT STEPS
  • Study vector cross product properties and applications in physics.
  • Learn about linear combinations and their significance in vector spaces.
  • Explore the concept of linear independence and its implications in higher dimensions.
  • Practice solving vector equations with varying coefficients and conditions.
USEFUL FOR

Students studying linear algebra, mathematicians working with vector calculus, and educators teaching vector operations and linear independence concepts.

Robin04
Messages
259
Reaction score
16

Homework Statement


Solve the following vector equation for ##\vec{y}##. ##\vec{a}##, and ##\vec{b}## are linearly independent vectors of the three dimensional space.

##\vec{a} \times (8\vec{y}+\vec{b}) = \vec{b}\times(-5\vec{y}+\vec{a})##

Homework Equations

The Attempt at a Solution


First I developed the brackets
##\vec{a}\times8\vec{y}+\vec{a}\times\vec{b} = \vec{b}\times(-5\vec{y})+\vec{b}\times\vec{a}##
I subtracted ##\vec{b}\times(-5\vec{y})## and ##\vec{a}\times\vec{b}## from both sides, so I get
##\vec{a}\times8\vec{y}-\vec{b}\times(-5\vec{y})=\vec{b}\times\vec{a}-\vec{a}\times\vec{b}## which also equals to
##\vec{y}\times(-8\vec{a}-5\vec{b}) = 2\vec{b}\times\vec{a}##

Then I expressed ##\vec{y}## as the linear combination of ##\vec{a}##, ##\vec{b}## and ##\vec{b}\times\vec{a}##
##\vec{y} = \alpha\vec{a}+\beta\vec{b}+\gamma\vec{b}\times\vec{a}## then I multiplied it (cross product) with ##-8\vec{a}-5\vec{b}##
##\vec{y}\times(-8\vec{a}-5\vec{b}) = -8\alpha(\vec{a}\times\vec{a})-5\alpha(\vec{a}\times\vec{b})-8\beta(\vec{b}\times\vec{a})-5\beta(\vec{b}\times\vec{b}) + \gamma(\vec{b}\times\vec{a})\times(-8\vec{a}-5\vec{b})##
##=(5\alpha-8\beta)(\vec{b}\times\vec{a})-8\gamma[\vec{a}(\vec{b}\vec{a})-\vec{b}(\vec{a}\vec{a})]-5\gamma[\vec{a}(\vec{b}\vec{b})-\vec{b}(\vec{a}\vec{b})]##
From the equation this has to be equal to ##2\vec{b}\times\vec{a}## so ##5\alpha-8\beta = 2## and ##\gamma = 0##

But if I make up an arbitrary ##\vec{y}## vector of this form and choose random ##\vec{a}## and ##\vec{b}## (linearly independent of course) it doesn't satisfy the equation. Where did I mess up?
 
Physics news on Phys.org
So if ##\gamma = 0 ## then doesn't that mean that ##\vec{y}## is a linear combination of ##\vec{a}## and ##\vec{b}## ?

When I computed it it seemed that ##\gamma## can be anything since the resultant ##\gamma## component term vectors are both perpendicular to ##\vec{a}## x ##\vec{b}##
 
jedishrfu said:
So if ##\gamma = 0 ## then doesn't that mean that ##\vec{y}## is a linear combination of ##\vec{a}## and ##\vec{b}## ?

When I computed it it seemed that ##\gamma## can be anything since the resultant ##\gamma## component term vectors are both perpendicular to ##\vec{a}## x ##\vec{b}##
How did you get that ##\gamma## can be anything?
 
Both a and b are perpendicular to a x b , right? Assuming that neither a nor b are the zero vector.
 
Yes
 
so their cross products are zero and thus ##\gamma## can be any value, right?
 
Did you test it by choosing an a and b vector, construct a y vector and evaluate your original equation?

Perhaps there's a mistake in the check...
 
Let ##\vec{a} =
\begin{bmatrix}
1 \\
1 \\
1 \\
\end{bmatrix},
\vec{b} =
\begin{bmatrix}
1 \\
2 \\
1 \\
\end{bmatrix},
\vec{y} =
\begin{bmatrix}
2 \\
1 \\
0 \\
\end{bmatrix},
\vec{y}## has to be a good choice because ##5\cdot 2 - 8\cdot1 = 2##, and ##\vec{a},\vec{b}## are independendent.
##-8\vec{a}-5\vec{b}=
\begin{bmatrix}
-13 \\
-18 \\
-13 \\
\end{bmatrix}, \vec{y}\times(-8\vec{a}-5\vec{b}) =
\begin{bmatrix}
-13 \\
26 \\
-23 \\
\end{bmatrix}
##, but ##2\vec{b}\times\vec{a} =
\begin{bmatrix}
2 \\
0 \\
-2 \\
\end{bmatrix}
##
 
Wouldn't you compute y from the the ##\alpha, \beta, \gamma## values and the a and b vectors? and then show that a, b and y satisfy the original formula?
 
  • #10
Robin04 said:
##\vec{y}## has to be a good choice because ##5\cdot 2 - 8\cdot1 = 2##
If ##\alpha = 2## and ##\beta=1##, then you have the wrong ##\vec{y}##.
 
  • #11
jedishrfu said:
Wouldn't you compute y from the the ##\alpha, \beta, \gamma## values and the a and b vectors? and then show that a, b and y satisfy the original formula?
DrClaude said:
If ##\alpha = 2## and ##\beta=1##, then you have the wrong ##\vec{y}##.

Aah what a mistake I made there... I should have written the final form of y, I've mistaken ##\alpha,\beta,\gamma## for its components, but they are coefficients of ##\vec{a},\vec{b}##. It works now, thank you!

But ##\gamma## has to be 0, otherwise it doesn't work for me.
 
  • Like
Likes   Reactions: jedishrfu
  • #12
Robin04 said:
Aah what a mistake I made there... I should have written the final form of y, I've mistaken ##\alpha,\beta,\gamma## for its components, but they are coefficients of ##\vec{a},\vec{b}##. It works now, thank you!

But ##\gamma## has to be 0, otherwise it doesn't work for me.

My feeling is that ##\gamma## can be any value but perhaps @DrClaude can comment on it.
 
  • #13
Could you show it with equations, please?
 
  • #14
let a = (1,0,0) and b=(0,1,0) and so a x b = ( 0,0,1)

then y=(8,-5,10) where ##\beta = (-5/8) \alpha##.

I chose ##\alpha = 8## and so ##\beta = -5## and arbitrarily chose ##\gamma = 10##

a x (8y) + a x b = (0,80,-40) + (0,0,1) = (0,80,-39)

b x (-5y) + b x a = (-50,0,40) + (0,0,-1) = (-50,0,39)

Well, I didn't succeed! I see where I got ##\gamma## wrong now and I think you're right, it must be zero.

----------------------

Let y = ##\alpha## a + ##\beta## b + ##\gamma## (a x b)

then ##\alpha## a x (8a + 5b) = 0 + 5 ##\alpha## ( a x b)

and ##\beta## b x ( 8a + 5b) = -8 ##\beta## (a x b) + 0

and ##\gamma## (a x b) x (8a + 5b) = 8##\gamma## (a x b) x a + 5##\gamma## (a x b) x b

...
 
Last edited:
  • #15
Robin04 said:
##\vec{y}\times(-8\vec{a}-5\vec{b}) = -8\alpha(\vec{a}\times\vec{a})-5\alpha(\vec{a}\times\vec{b})-8\beta(\vec{b}\times\vec{a})-5\beta(\vec{b}\times\vec{b}) + \gamma(\vec{b}\times\vec{a})\times(-8\vec{a}-5\vec{b})##
##=(5\alpha-8\beta)(\vec{b}\times\vec{a})-8\gamma[\vec{a}(\vec{b}\vec{a})-\vec{b}(\vec{a}\vec{a})]-5\gamma[\vec{a}(\vec{b}\vec{b})-\vec{b}(\vec{a}\vec{b})]##
From the equation this has to be equal to ##2\vec{b}\times\vec{a}## so ##5\alpha-8\beta = 2## and ##\gamma = 0##
You found
$$
-8\gamma[\vec{a}(\vec{b}\vec{a})-\vec{b}(\vec{a}\vec{a})]-5\gamma[\vec{a}(\vec{b}\vec{b})-\vec{b}(\vec{a}\vec{b})] = 0
$$
from which either ##\gamma = 0## or
$$
8[\vec{a}(\vec{b}\vec{a})-\vec{b}(\vec{a}\vec{a})]+5[\vec{a}(\vec{b}\vec{b})-\vec{b}(\vec{a}\vec{b})] = 0
$$
With a bit of algebra, you can transform this into the equation ##c_1 \vec{a} = c_2 \vec{b}##, which contradicts ##\vec{a}## and ##\vec{b}## being linearly independent (except if ##c_1 = c_2 = 0##, but you can eliminate that possibility for real vectors).
 
  • Like
Likes   Reactions: Robin04 and jedishrfu
  • #17
DrClaude said:
You found
$$
-8\gamma[\vec{a}(\vec{b}\vec{a})-\vec{b}(\vec{a}\vec{a})]-5\gamma[\vec{a}(\vec{b}\vec{b})-\vec{b}(\vec{a}\vec{b})] = 0
$$
from which either ##\gamma = 0## or
$$
8[\vec{a}(\vec{b}\vec{a})-\vec{b}(\vec{a}\vec{a})]+5[\vec{a}(\vec{b}\vec{b})-\vec{b}(\vec{a}\vec{b})] = 0
$$
With a bit of algebra, you can transform this into the equation ##c_1 \vec{a} = c_2 \vec{b}##, which contradicts ##\vec{a}## and ##\vec{b}## being linearly independent (except if ##c_1 = c_2 = 0##, but you can eliminate that possibility for real vectors).
Aah, so this would have been the precise way of saying this, I should have known!

Thank you all for you help!
 

Similar threads

Replies
18
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
56
Views
6K
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K