- #1
fiksx
- 77
- 1
Homework Statement
>There are three vector $$ \vec a ,\vec b, \vec c$$ in three-dimensional real vector space, and the inner product between them $$\vec a . \vec a=\vec b.\vec b=\vec a.\vec c=1, \vec a.\vec b=0, \vec c.\vec c=4 $$ When setting $$x = \vec b.\vec c$$ ,
(dot here means dot product)
answer the following question: when $$ \vec a ,\vec b, \vec c$$ are linearly dependent, find all possible values of $$ x$$
Homework Equations
3. The Attempt at a Solution
For dependent condition
$$\begin{align}
(a×b)·c &= 0\\
a·(b×c) &= 0\\
a(bc \sin θ)&=0
\end{align}$$
So ## \theta= 0## and ##\pi##
Then
$$\begin{align}
x&=|b||c| \cos \theta \\
x&=2 \cos \theta \\
\implies x &= 2 \cos 0, x = 2 \cos \pi \\
x &= \mp 2
\end{align}$$
Am I right?
Last edited: